Please wait a minute...
Acta Metall Sin  2008, Vol. 44 Issue (9): 1035-1041     DOI:
Research Articles Current Issue | Archive | Adv Search |
Bone Induction of a Biodegradable Magnesium Alloy
;;
中科院金属研究所
Cite this article: 

. Bone Induction of a Biodegradable Magnesium Alloy. Acta Metall Sin, 2008, 44(9): 1035-1041 .

Download:  PDF(3585KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  AZ31B magnesium alloy samples with two dimensions (stabilization splint and dictyo-plate) were implanted on the submaxilla surface of the New-Zealand rabbits, with comparison of Ti-6Al-4V titanium alloy as a control. Two kinds of bone coloboma were made on the submaxilla surface in order to model the different areas of bone defect. It was found from the experiments, after 3 and 6 months, that newly formed bone around the AZ31B magnesium alloy stabilization splint was much more than the control group. After 6 months, both newly formed bone and osteolysis were found on the surface of the dictyo-plate implants. It can be concluded that magnesium alloy implantation is beneficial to the new bone formation, but overdose of magnesium ions from biodegradation can also lead to the increase of osteoclast activity.
Key words:  magnesium alloy      degradable materials      metal medical materials      bone induction      
Received:  18 February 2008     
ZTFLH:  TG146.2  
  R318.08  
Service
E-mail this article
Add to citation manager
E-mail Alert
RSS
Articles by authors

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y2008/V44/I9/1035

[1]Mark P S,Alexis M P,Jerawala H,George D.Biomateri- als,2006 ;27:1728
[2]Erbel R,Di M C,Bartunek J,Bonnier J,de Bruyne B, Eberli F R,Erne P,Haude M.Lancet,2007;369:186
[3]Witte F,Fischer J,Nellesen J,Crostack H A,Kaese V, Pisch A,Beckmann F,Windhagen H.Biomaterials,2006; 27:1013
[4]Witte F,Ulrich H,Rudert M,Willbold E.J Biomed Mater Res,2007;81:748
[5]Witte F,Ulrich H,Palm C,Willbold E.J Biomed Mater Res,2007;81:757
[6]Vonder H N,Krause A,Hackenbroich C,Bormann D,Lu- cas A,Meyer-Lindenberg A.Dtsch Tierarztl Wochenschr, 2006;113:439
[7]Waselau1 M,Samii V F,Weisbrode S E,Litsky A S,Bertone A L.Am J Vet Res,2007;68:370
[8]Agrawal C M,Athanasiou K A.J Biomed Mater Res, 1997;38:105
[9]Kuwahara H,Al-Abdullat Y,Mazaki N,Tsutsumi S, Aizawa T.Mater Trans,2001;42:1317
[10]Zhang G D,Huang J J,Yang K,Zhang B C,Ai H J.Acta Metall Sin,2007;43:1186 (张广道,黄晶晶,杨柯,张炳春,艾红军.金属学报,2D07;43:1186)
[1] SHAO Xiaohong, PENG Zhenzhen, JIN Qianqian, MA Xiuliang. Unravelling the {101¯2} Twin Intersection Between LPSO Structure/SFs in Magnesium Alloy[J]. 金属学报, 2023, 59(4): 556-566.
[2] ZHU Yunpeng, QIN Jiayu, WANG Jinhui, MA Hongbin, JIN Peipeng, LI Peijie. Microstructure and Properties of AZ61 Ultra-Fine Grained Magnesium Alloy Prepared by Mechanical Milling and Powder Metallurgy Processing[J]. 金属学报, 2023, 59(2): 257-266.
[3] TANG Weineng, MO Ning, HOU Juan. Research Progress of Additively Manufactured Magnesium Alloys: A Review[J]. 金属学报, 2023, 59(2): 205-225.
[4] CHEN Yang, MAO Pingli, LIU Zheng, WANG Zhi, CAO Gengsheng. Detwinning Behaviors and Dynamic Mechanical Properties of Precompressed AZ31 Magnesium Alloy Subjected to High Strain Rates Impact[J]. 金属学报, 2022, 58(5): 660-672.
[5] ZENG Xiaoqin, WANG Jie, YING Tao, DING Wenjiang. Recent Progress on Thermal Conductivity of Magnesium and Its Alloys[J]. 金属学报, 2022, 58(4): 400-411.
[6] LI Shaojie, JIN Jianfeng, SONG Yuhao, WANG Mingtao, TANG Shuai, ZONG Yaping, QIN Gaowu. Multimodal Microstructure of Mg-Gd-Y Alloy Through an Integrated Simulation of Process-Structure-Property[J]. 金属学报, 2022, 58(1): 114-128.
[7] WANG Huiyuan, XIA Nan, BU Ruyu, WANG Cheng, ZHA Min, YANG Zhizheng. Current Research and Future Prospect on Low-Alloyed High-Performance Wrought Magnesium Alloys[J]. 金属学报, 2021, 57(11): 1429-1437.
[8] PAN Fusheng, JIANG Bin. Development and Application of Plastic Processing Technologies of Magnesium Alloys[J]. 金属学报, 2021, 57(11): 1362-1379.
[9] WANG Xuemei, YIN Zhengzheng, YU Xiaotong, ZOU Yuhong, ZENG Rongchang. Comparison of Corrosion Resistance of Phenylalanine, Methionine, and Asparagine-Induced Ca-P Coatings on AZ31 Magnesium Alloys[J]. 金属学报, 2021, 57(10): 1258-1271.
[10] ZHANG Yang, SHAO Jianbo, CHEN Tao, LIU Chuming, CHEN Zhiyong. Deformation Mechanism and Dynamic Recrystallization of Mg-5.6Gd-0.8Zn Alloy During Multi-Directional Forging[J]. 金属学报, 2020, 56(5): 723-735.
[11] Rongchang ZENG, Lanyue CUI, Wei KE. Biomedical Magnesium Alloys: Composition, Microstructure and Corrosion[J]. 金属学报, 2018, 54(9): 1215-1235.
[12] Yanyu LIU, Pingli MAO, Zheng LIU, Feng WANG, Zhi WANG. Theoretical Calculation of Schmid Factor and Its Application Under High Strain Rate Deformation in Magnesium Alloys[J]. 金属学报, 2018, 54(6): 950-958.
[13] Guohua WU, Yushi CHEN, Wenjiang DING. Current Research and Future Prospect on Microstructures Controlling of High Performance Magnesium Alloys During Solidification[J]. 金属学报, 2018, 54(5): 637-646.
[14] Xudong LI, Pingli MAO, Yanyu LIU, Zheng LIU, Zhi WANG, Feng WANG. Anisotropy and Deformation Mechanisms ofAs-Extruded Mg-3Zn-1Y Magnesium AlloyUnder High Strain Rates[J]. 金属学报, 2018, 54(4): 557-565.
[15] Shoumei XIONG, Jinglian DU, Zhipeng GUO, Manhong YANG, Mengwu WU, Cheng BI, Yongyou CAO. Characterization and Modeling Study on Interfacial Heat Transfer Behavior and Solidified Microstructure of Die Cast Magnesium Alloys[J]. 金属学报, 2018, 54(2): 174-192.
No Suggested Reading articles found!