Please wait a minute...
Acta Metall Sin  2008, Vol. 44 Issue (9): 1042-1050     DOI:
Research Articles Current Issue | Archive | Adv Search |
Dendrite Primary Spacing Selection Simulation by the Cellular Automaton Model
[中]单博炜 [英]SHAN Bo-Wei;Weidong Huang;Xin Lin;
西北工业大学凝固技术国家重点实验室
Cite this article: 

SHAN Bo-Wei; Weidong Huang; Xin Lin. Dendrite Primary Spacing Selection Simulation by the Cellular Automaton Model. Acta Metall Sin, 2008, 44(9): 1042-1050 .

Download:  PDF(2067KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  A cellular automaton model was developed to simulate the primary spacing selection of dendritic array during directional solidification. A simplified growth kinetics was adopted, which could relax the computing complexity, and a strict method to determine the stable state of the system was proposed. Based on two type of primary spacing adjustment mechanisms in the simulation: branching-instability and submerging-instability, in order to determine the allowable range of primary spacing of dendritic arrays for given growth conditions, two different methods of tests were adopted, in one way the seeds number was fixed with a step-varying pulling velocity, and in another way the pulling velocity was constant with different seeds number. The simulated results showed that the allowable range is independent from test methods. The upper limit, λmax,and the lower limit, λmin, of the allowable range as the function of pulling velocity, V, can be generally expressed as the power function of the pulling velocity. During the simulation of the SCN-2.5%ethanol dendrite growth, the parameter of the power function were in good agreement with Huang’s experiments. The simulated lower limit was also in good agreement with Hunt-Lu model.
Key words:  cellular automaton      dendrite      primary spacing      
Received:  21 December 2007     
ZTFLH:  TG111.4  

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y2008/V44/I9/1042

[1]Langer J S.Rev Mod Phys,1980;52:1
[2]Hunt J D.Solidification and Casting of Metals.London: The Metal Society,1979:3
[3]Kurz W,Fisher D J.Acta Metall,1981;29:11
[4]Quested P N,McLean M.Mater Sci Eng,1984;65:171
[5]Chopra M A,Tewari S N.Metall Trans,1991;22A:2467
[6]Huang W D.PhD Thesis,Northwestern Polytechnical University.Xi'an,1989 (黄卫东.西北工业大学博士学位论文,西安,1989)
[7]Huang W D,Geng X G,Zhou Y H.J Cryst Growth,1993; 134:105
[8]Pratt P A,Grugel R N.Mater Charact,1993;31:225
[9]Hun S H,Trivedi R.Acta Metall Mater,1994;42:25
[10]Lin X,Huang W,Feng J,Li T,Zhou Y.Acta Mater,1999; 47:3271
[11]Warren J A,Langer J S.Phys Rev,1990;42A:3518
[12]Warren J A,Langer J S.Phys Rev,1993;47E:2702
[13]Hunt J D,Lu S Z.Metall Mater Trans,1996;27A:611
[14]Warren J A,Boettinger W J.Acta Metall Mater,1995; 43:689
[15]Boettinger W J,Warren J A.Metall Mater Trans,1996; 27A:657
[16]Boettinger W J,Warren J A.J Crystal Growth,1999;200: 583
[17]Rappaz M,Gandin Ch-A.Acta Metall Mater,1993;41: 345
[18]Gandin Ch-A,Rappaz M.Acta Metall Mater,1994;42: 2233
[19]Nastac L.Acta Mater,1999;47:4253
[20]Zhu M F,Hong C P.ISIJ Int,2001;41:436
[21]Zhu M F,Kim J M,Hong C P.ISIJInt,2001;41:992
[22]Beltran-Sanchez L,Stefanescu D M.Int J Cast Met Res, 2002;15:251
[23]Beltran Sanchez L,Stefanescu D M.Metall Mater Trans, 2004;35A:2471
[24]Dong H B,Lee P D.Acta Mater,2005;53:659
[25]Wang W,Lee P D,McLean M.Acta Mater,2003;51:2971
[26]Yang X L,Dong H B,Wang W,Lee P D.Mater Sci Eng, 2004;A386:129
[27]Gandin C A,Rappaz M.Acta Mater,1997;45:2187
[28]Xu Q Y,Liu B C.China Mech Eng,2001;12:328 (许庆彦,柳百成.中国机械工程,2001;12:328)
[29]Kang X H,Du Q,Li D Z,Li Y Y.Acta Metall Sin,2004; 40:452 (康秀红,杜强,李殿中,李依依.金属学报,2004;40:452)
[30]Guo D Y,Yang Y S.Foundry,2006;55:601 (郭大勇,杨院生.铸造,2006;55:601)
[31]Wang T M.PhD Thesis,Dalian University of Technology, 2000 (王同敏.大连理工大学博士学位论文,2000)
[32]Glicksman M E,Schaefer R J,Ayers J D.Metall Trans, 1976;7A:1747
[33]Schaefer R J,Coriell S R.Metall Trans,1984;15A:2109
[34]Ivantsov G P.Dokl Akad Nauk SSSR,1947;58:567 ( )
[1] GUO Dongwei, GUO Kunhui, ZHANG Fuli, ZHANG Fei, CAO Jianghai, HOU Zibing. A New Method for CET Position Determination of Continuous Casting Billet Based on the Variation Characteristics of Secondary Dendrite Arm Spacing[J]. 金属学报, 2022, 58(6): 827-836.
[2] Hui FANG,Hua XUE,Qianyu TANG,Qingyu ZHANG,Shiyan PAN,Mingfang ZHU. Dendrite Coarsening and Secondary Arm Migration in the Mushy Zone During Directional Solidification:[J]. 金属学报, 2019, 55(5): 664-672.
[3] Dejian SUN,Lin LIU,Taiwen HUANG,Jiachen ZHANG,Kaili CAO,Jun ZHANG,Haijun SU,Hengzhi FU. Dendrite Growth and Orientation Evolution in the Platform of Simplified Turbine Blade for Nickel-Based Single Crystal Superalloys[J]. 金属学报, 2019, 55(5): 619-626.
[4] XIE Guang, ZHANG Shaohua, ZHENG Wei, ZHANG Gong, SHEN Jian, LU Yuzhang, HAO Hongquan, WANG Li, LOU Langhong, ZHANG Jian. Formation and Evolution of Low Angle Grain Boundary in Large-Scale Single Crystal Superalloy Blade[J]. 金属学报, 2019, 55(12): 1527-1536.
[5] Mingfang ZHU, Like XING, Hui FANG, Qingyu ZHANG, Qianyu TANG, Shiyan PAN. Progresses in Dendrite Coarsening During Solidification of Alloys[J]. 金属学报, 2018, 54(5): 789-800.
[6] Tongmin WANG, Jingjing WEI, Xudong WANG, Man YAO. Progress and Application of Microstructure Simulation of Alloy Solidification[J]. 金属学报, 2018, 54(2): 193-203.
[7] Lei WEI, Yongqing CAO, Haiou YANG, Xin LIN, Meng WANG, Weidong HUANG. Numerical Simulation of Anomalous Eutectic Growth of Ni-Sn Alloy Under Laser Remelting of Powder Bed[J]. 金属学报, 2018, 54(12): 1801-1808.
[8] Qing LI,Zixing WANG,Shuyuan XIE. Research on the Development of Mathematical Model of the Whole Process of Electroslag Remelting and the Process Simulation[J]. 金属学报, 2017, 53(4): 494-504.
[9] Wenying GUO,Xiaoqiang HU,Xiaoping MA,Dianzhong LI. EFFECT OF TiN PRECIPITATES ON SOLIDIFICATION MICROSTRUCTURE OF MEDIUM CARBON Cr-Mo WEAR RESISTANT STEEL[J]. 金属学报, 2016, 52(7): 769-777.
[10] Mingfang ZHU, Qianyu TANG, Qingyu ZHANG, Shiyan PAN, Dongke SUN. CELLULAR AUTOMATON MODELING OF MICRO-STRUCTURE EVOLUTION DURING ALLOY SOLIDIFICATION[J]. 金属学报, 2016, 52(10): 1297-1310.
[11] Yumin WANG,Shuangming LI,Hong ZHONG,Hengzhi FU. EVALUATION OF THE UNIFORM DISTRIBUTION OF DENDRITIC MICROSTRUCTURE IN DIRECTIONALLY SOLIDIFIED SINGLE-CRYSTAL DD6 SUPERALLOY[J]. 金属学报, 2015, 51(9): 1038-1048.
[12] Rui CHEN, Qingyan XU, Qinfang WU, Huiting GUO, Baicheng LIU. NUCLEATION MODEL AND DENDRITE GROWTH SIMULATION IN SOLIDIFICATON PROCESS OF Al-7Si-Mg ALLOY[J]. 金属学报, 2015, 51(6): 733-744.
[13] Cheng BI, Zhipeng GUO, E LIOTTI, Shoumei XIONG, P S GRANT. QUANTIFICATION STUDY ON DENDRITE FRAGMENTATION IN SOLIDIFICATION PROCESS OF ALLUMINUM ALLOYS[J]. 金属学报, 2015, 51(6): 677-684.
[14] WANG Lilin, LIN Xin, WANG Yonghui, YU Honglei, HUANG Weidong. REAL-TIME OBSERVATION OF SOLIDIFICATION MICROSTRUCTURE IN LASER REMELTING POOL[J]. 金属学报, 2015, 51(4): 492-498.
[15] ZHANG Lei, ZHAO Honglei, ZHU Mingfang. SIMULATION OF SOLIDIFICATION MICROSTRUC-TURE OF SPHEROIDAL GRAPHITE CAST IRON USING A CELLULAR AUTOMATON METHOD[J]. 金属学报, 2015, 51(2): 148-158.
No Suggested Reading articles found!