Please wait a minute...
Acta Metall Sin  2005, Vol. 41 Issue (1): 103-    DOI:
Research Articles Current Issue | Archive | Adv Search |
Comparative Study of the Cavity Pressure of Magnesium Alloy and Aluminium Alloy During Die Casting Process
LIU Wenhui; LIU Yangai; XONG Shoumei; LIU Baicheng;Y. Matsumoto; M. Murakami
Mechanical Engineering Department; Tsinghua University; Beijing 100084
Cite this article: 

LIU Wenhui; LIU Yangai; XONG Shoumei; LIU Baicheng; Y. Matsumoto; M. Murakami. Comparative Study of the Cavity Pressure of Magnesium Alloy and Aluminium Alloy During Die Casting Process. Acta Metall Sin, 2005, 41(1): 103-.

Download:  PDF(192KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  The pressure changes in the cavity of ADC12 and AZ91D die castings under the same processing technology have been measured. From liquid phase to solid phase, the pressure curves of ADC12 and AZ91D are divided into six sections and the characteristic parameters were defined based on the experimental results. The results show that the filling pressure and filling time as well as the trend of pressure change of these two alloys are almost the same. The pressure holding time and the effective holding time of the transferred pressure of ADC12 are much higher than those of AZ91D. For different measured points, the maximum transferred pressures of ADC12 are close to each other and those of AZ91D show a great difference. The difference of pressure curves between the two alloys is related to the solidification characteristic of the liquid metal and the mechanical properties of the alloys.
Key words:  magnesium alloy      aluminium alloy      die casting      cavity pressure      
Received:  13 January 2004     
ZTFLH:  TG146.2  
  TG136.1  

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y2005/V41/I1/103

[1] Tanikawa D, Asai K, Nomura H, Kato E. 2002 Japan Die
Casting Congress, 2002: 145
[2] Kubota S, Fujimaki D, Katoh T. 2002 Japan Die Casting
Congress, 2002: 187
[3] Tong K S, Hu B H, Niu X P. J Mater Proc Technol, 2002;
127: 238
[4] Lin B N. Foundry Rheology. Harbin: Press of Harbin In-
stitute of Technology, 1991: 108
(林柏年.铸造流变学.哈尔滨:哈尔滨工业大学出版社.1991:
108) .
[5] Li D F, Wang Z D. Nonferrous Met, 1997; (5): 4
(李德富,王志东.有色金属, 1997;(5):4)
[6] Cheng J, Dang J Z, Cheng M, Zhao J P. J North Chin
Inst Technol, 1995; (1): 9
(程军,党惊知,程眉,赵建平.华北工学院学报,1995;
(1):9)
[7] Wang B D, Liu Y, Li D F, Wang B X, Wang Z T. Met Forming Technol, 2003; (2): 40
(王炳德,刘莹,李德富,王本贤,王忠堂.金属成型工艺,
2003;(2):40)c
[1] SHAO Xiaohong, PENG Zhenzhen, JIN Qianqian, MA Xiuliang. Unravelling the {101¯2} Twin Intersection Between LPSO Structure/SFs in Magnesium Alloy[J]. 金属学报, 2023, 59(4): 556-566.
[2] TANG Weineng, MO Ning, HOU Juan. Research Progress of Additively Manufactured Magnesium Alloys: A Review[J]. 金属学报, 2023, 59(2): 205-225.
[3] ZHU Yunpeng, QIN Jiayu, WANG Jinhui, MA Hongbin, JIN Peipeng, LI Peijie. Microstructure and Properties of AZ61 Ultra-Fine Grained Magnesium Alloy Prepared by Mechanical Milling and Powder Metallurgy Processing[J]. 金属学报, 2023, 59(2): 257-266.
[4] CHEN Yang, MAO Pingli, LIU Zheng, WANG Zhi, CAO Gengsheng. Detwinning Behaviors and Dynamic Mechanical Properties of Precompressed AZ31 Magnesium Alloy Subjected to High Strain Rates Impact[J]. 金属学报, 2022, 58(5): 660-672.
[5] ZENG Xiaoqin, WANG Jie, YING Tao, DING Wenjiang. Recent Progress on Thermal Conductivity of Magnesium and Its Alloys[J]. 金属学报, 2022, 58(4): 400-411.
[6] LI Shaojie, JIN Jianfeng, SONG Yuhao, WANG Mingtao, TANG Shuai, ZONG Yaping, QIN Gaowu. Multimodal Microstructure of Mg-Gd-Y Alloy Through an Integrated Simulation of Process-Structure-Property[J]. 金属学报, 2022, 58(1): 114-128.
[7] LIU Riping, MA Mingzhen, ZHANG Xinyu. New Development of Research on Casting of Bulk Amorphous Alloys[J]. 金属学报, 2021, 57(4): 515-528.
[8] CHEN Junzhou, LV Liangxing, ZHEN Liang, DAI Shenglong. Precipitation Strengthening Model of AA 7055 Aluminium Alloy[J]. 金属学报, 2021, 57(3): 353-362.
[9] WANG Huiyuan, XIA Nan, BU Ruyu, WANG Cheng, ZHA Min, YANG Zhizheng. Current Research and Future Prospect on Low-Alloyed High-Performance Wrought Magnesium Alloys[J]. 金属学报, 2021, 57(11): 1429-1437.
[10] PAN Fusheng, JIANG Bin. Development and Application of Plastic Processing Technologies of Magnesium Alloys[J]. 金属学报, 2021, 57(11): 1362-1379.
[11] WANG Xuemei, YIN Zhengzheng, YU Xiaotong, ZOU Yuhong, ZENG Rongchang. Comparison of Corrosion Resistance of Phenylalanine, Methionine, and Asparagine-Induced Ca-P Coatings on AZ31 Magnesium Alloys[J]. 金属学报, 2021, 57(10): 1258-1271.
[12] ZHANG Yang, SHAO Jianbo, CHEN Tao, LIU Chuming, CHEN Zhiyong. Deformation Mechanism and Dynamic Recrystallization of Mg-5.6Gd-0.8Zn Alloy During Multi-Directional Forging[J]. 金属学报, 2020, 56(5): 723-735.
[13] Rongchang ZENG, Lanyue CUI, Wei KE. Biomedical Magnesium Alloys: Composition, Microstructure and Corrosion[J]. 金属学报, 2018, 54(9): 1215-1235.
[14] Yanyu LIU, Pingli MAO, Zheng LIU, Feng WANG, Zhi WANG. Theoretical Calculation of Schmid Factor and Its Application Under High Strain Rate Deformation in Magnesium Alloys[J]. 金属学报, 2018, 54(6): 950-958.
[15] Guohua WU, Yushi CHEN, Wenjiang DING. Current Research and Future Prospect on Microstructures Controlling of High Performance Magnesium Alloys During Solidification[J]. 金属学报, 2018, 54(5): 637-646.
No Suggested Reading articles found!