Please wait a minute...
Acta Metall Sin  2005, Vol. 41 Issue (9): 910-916     DOI:
Research Articles Current Issue | Archive | Adv Search |
FULL-ELECTRON CALCULATION OF α-LaNi5H0.5 and β-LaNi5H3
QI Xinhua; GAO Tao; CHEN Bo
Institute of Atomic and Molecular Physics; Sichuan University; Chengdu 610065
Cite this article: 

QI Xinhua; GAO Tao; CHEN Bo. FULL-ELECTRON CALCULATION OF α-LaNi5H0.5 and β-LaNi5H3. Acta Metall Sin, 2005, 41(9): 910-916 .

Download:  PDF(268KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  Based on the generalized gradient approximation (GGA) of density function and the full-potential linearized augmented plane wave (FLAPW) method, the equilibrium structure and density of states were calculated for the primary solid solution phase α-LaN5H0.5 and the intermediate phase β-LaNi5H3. In the α-phase region, 12n site is the most stable position in five nonequivalent interstices; with increasing H atoms the cell parameter a axis increases, while the c axis is constant. In the α→β region, with increasing H atoms a large increase in the a$ axis and a relatively small increase in the c axis are concluded. The charge density and density of states are also calculated for the intermediate phase.
Key words:  La-Ni-H compound      primary solid solution phase      
Received:  20 January 2005     
ZTFLH:  TG139,TG111  

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y2005/V41/I9/910

[1] Flanagan T B, Wulff C A, Bowerman B S. J Solid State Chem, 1980; 34: 215
[2] Murray J J, Post M L, Taylor J B. J Less-Common Met, 1981; 80: 211
[3] Feng Z K, Yang H X, Jiao Y L, Ma Z Q. Rare Met Mater Eng, 1990; (1): 59 (冯治库,杨宏秀,焦玉琏,马忠乾.稀有金属材料与工程,1990; (1):59)
[4] Fischer P, Furrer A, Busch G, Schlapbach L. Phys Acta, 1977; 50: 421
[5] Soubeyroux J L, Percheron-Guegan A, Achard J C. J Less-Common Met, 1987; 129: 181
[6] Kisi E H, Gray E M A, Kennedy S J. J Alloys Compd, 1994; 216: 213
[7] Hempelmann R, Richter D, Eckold G. J Less-Common Met, 1984; 104: 1
[8] Nakamura H, Nguyen-Manh D, Pettifor D G. J Alloys Compd, 1998; 281: 81
[9] Tatsumi K, Tanaka I, Inui H, Tanaka K, Yamaguchi M, Adachi H. Phys Rev, 2001; 64B: 184105
[10] Nomura K, Uruno H, Shinozuka H, Suda S, Ono S. J LessCommon Met, 1985; 107: 221
[11] Akiba E, Nomura K, Ono S. J Less-Common Met, 1987; 129: 159
[12] Ono S, Nomura K, Akiba E. J Leas-Common Met, 1985; 113: 113
[13] Akiba E, Hayakawa H, Ishido Y, Nomura K. Phys Chem, 1989; 163: 291
[14] Van Vucht J H N, Kuipers F A, Bruning H C M.Philips Res Rep,1970;25:133
[15] Blaha P,Schwarz K, Madsen G K H, Kvasnicka D, Luitz J. Computer Code WIEN2K, An Augmented Plane Wave Plus Local Orbital Program for Calculating Crystal Properties, Vienna, Austria: Vienna University of Technology, 2001
[16] Westlake D G. J Less-Common Met, 1983; 90: 251
[17] Qi X H, Gao T, Zhu Z H. J Atom Mol Phys, 2004; 21: 366 (齐新华,高 涛,朱正和.原子与分子物理学报,2004;21: 366)
[18] Guo J, Wei W L, Ma S Y. Acta Metall Sin, 2003; 39: 10 (郭进,韦文楼,马树元.金属学报, 2003;39:10)w
[1] LIU Junpeng, CHEN Hao, ZHANG Chi, YANG Zhigang, ZHANG Yong, DAI Lanhong. Progress of Cryogenic Deformation and Strengthening-Toughening Mechanisms of High-Entropy Alloys[J]. 金属学报, 2023, 59(6): 727-743.
[2] LI Qian, SUN Xuan, LUO Qun, LIU Bin, WU Chengzhang, PAN Fusheng. Regulation of Hydrogen Storage Phase and Its Interface in Magnesium-Based Materials for Hydrogen Storage Performance[J]. 金属学报, 2023, 59(3): 349-370.
[3] MIAO Junwei, WANG Mingliang, ZHANG Aijun, LU Yiping, WANG Tongmin, LI Tingju. Tribological Properties and Wear Mechanism of AlCr1.3TiNi2 Eutectic High-Entropy Alloy at Elevated Temperature[J]. 金属学报, 2023, 59(2): 267-276.
[4] CHEN Fei, QIU Pengcheng, LIU Yang, SUN Bingbing, ZHAO Haisheng, SHEN Qiang. Microstructure and Mechanical Properties of NiTi Shape Memory Alloys by In Situ Laser Directed Energy Deposition[J]. 金属学报, 2023, 59(1): 180-190.
[5] HAN Luhui, KE Haibo, ZHANG Pei, SANG Ge, HUANG Huogen. Kinetic Crystallization Behavior of Amorphous U60Fe27.5Al12.5 Alloy[J]. 金属学报, 2022, 58(10): 1316-1324.
[6] . Precipitation Strengthening in Titanium Alloys from First Principles Investigation[J]. 金属学报, 0, (): 0-0.
[7] LIU Shuaishuai, HOU Chaonan, WANG Engang, JIA Peng. Plastic Rheological Behaviors of Zr61Cu25Al12Ti2 and Zr52.5Cu17.9Ni14.6Al10Ti5 Amorphous Alloys in the Supercooled Liquid Region[J]. 金属学报, 2022, 58(6): 807-815.
[8] ZHANG Jinyong, ZHAO Congcong, WU Yijin, CHEN Changjiu, CHEN Zheng, SHEN Baolong. Structural Characteristic and Crystallization Behavior of the (Fe0.33Co0.33Ni0.33)84 -x Cr8Mn8B x High-Entropy-Amorphous Alloy Ribbons[J]. 金属学报, 2022, 58(2): 215-224.
[9] ZHU Min, OUYANG Liuzhang. Kinetics Tuning and Electrochemical Performance of Mg-Based Hydrogen Storage Alloys[J]. 金属学报, 2021, 57(11): 1416-1428.
[10] ZUO Liang, LI Zongbin, YAN Haile, YANG Bo, ZHAO Xiang. Texturation and Functional Behaviors of Polycrystalline Ni-Mn-X Phase Transformation Alloys[J]. 金属学报, 2021, 57(11): 1396-1415.
[11] YANG Qun, PENG Sixu, BU Qingzhou, YU Haibin. Revealing Glass Transition and Supercooled Liquid in Ni80P20 Metallic Glass[J]. 金属学报, 2021, 57(4): 553-558.
[12] BI Jiazi, LIU Xiaobin, LI Ran, ZHANG Tao. Tribological Properties of Polyalphaolefin (PAO6) Lubricant Modified with Particles Additives of Metallic Glass[J]. 金属学报, 2021, 57(4): 559-566.
[13] QU Ruitao, WANG Xiaodi, WU Shaojie, ZHANG Zhefeng. Research Progress in Shear Banding Deformation and Fracture Mechanisms of Metallic Glasses[J]. 金属学报, 2021, 57(4): 453-472.
[14] PAN Jie, DUAN Fenghui. Rejuvenation Behaviors in Metallic Glasses[J]. 金属学报, 2021, 57(4): 439-452.
[15] LI Ning, HUANG Xin. Recent Advances on 3D Printed Bulk Metallic Glasses[J]. 金属学报, 2021, 57(4): 529-541.
No Suggested Reading articles found!