|
|
Multi-Slips and Ductility Regulation of Magnesium Alloys |
ZENG Xiaoqin1,2( ), YU Mingdi1,2, WANG Jingya1,2 |
1 National Engineering Research Center of Light Alloy Net Forming, Shanghai Jiao Tong University, Shanghai 200240, China 2 State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China |
|
Cite this article:
ZENG Xiaoqin, YU Mingdi, WANG Jingya. Multi-Slips and Ductility Regulation of Magnesium Alloys. Acta Metall Sin, 2025, 61(3): 361-371.
|
Abstract Despite recent advancements in enhancing their absolute strength, magnesium alloys continue to face significant challenges due to their limited ductility and formability. This strength-ductility trade-off restricts the use of magnesium components in processing applications. This work explores the potential of improving the ductility of magnesium alloys by focusing on their crystal properties and plastic deformation mechanisms. The concept of multi-slips promoting ductility is proposed as a solution. By tailoring solute atoms and regulating the critical resolved shear stress ratios of basal and nonbasal slip systems through temperature adjustments, additional slip systems can be activated, thereby reducing plastic deformation anisotropy. External modifications, such as refining grain size or introducing deformable phases, can activate new plastic deformation mechanisms beyond dislocation slip. These adjustments offer methods to accommodate the plastic strain of magnesium alloys, presenting new perspectives for enhancing magnesium ductility and formability.
|
Received: 29 October 2024
|
|
Fund: National Natural Science Foundation of China(52425101);National Natural Science Foundation of China(52471012) |
Corresponding Authors:
ZENG Xiaoqin, professor, Tel: (021)54740838, E-mail: xqzeng@sjtu.edu.cn
|
1 |
Zeng X Q, Chen Y W, Wang J Y, et al. Research progress of high-performance rare earth magnesium alloys [J]. Chin. J. Nonferrous Met., 2021, 31: 2963
|
|
曾小勤, 陈义文, 王静雅 等. 高性能稀土镁合金研究新进展 [J]. 中国有色金属学报, 2021, 31: 2963
|
2 |
Shen Z, Wang Z P, Hu B, et al. Research progress on the mechanisms controlling high-temperature oxidation resistance of Mg alloys [J]. Acta Metall. Sin., 2023, 59: 371
doi: 10.11900/0412.1961.2022.00495
|
|
沈 朝, 王志鹏, 胡 波 等. 镁合金抗高温氧化机理研究进展 [J]. 金属学报, 2023, 59: 371
|
3 |
Wu G H, Tong X, Jiang R, et al. Grain refinement of as-cast Mg-RE alloys: Research progress and future prospect [J]. Acta Metall. Sin., 2022, 58: 385
doi: 10.11900/0412.1961.2021.00519
|
|
吴国华, 童 鑫, 蒋 锐 等. 铸造Mg-RE合金晶粒细化行为研究现状与展望 [J]. 金属学报, 2022, 58: 385
doi: 10.11900/0412.1961.2021.00519
|
4 |
Yang B B, Wang J, Li Y P, et al. Deformation mechanisms of dual-textured Mg-6.5Zn alloy with limited tension-compression yield asymmetry [J]. Acta Mater., 2023, 248: 118766
|
5 |
Chen Y W, Wang J Y, Zheng W S, et al. CALPHAD-guided design of Mg-Y-Al alloy with improved strength and ductility via regulating the LPSO phase [J]. Acta Mater., 2024, 263: 119521
|
6 |
Conrad H, Robertson W D. Effect of temperature on the flow stress and strain-hardening coefficient of magnesium single crystals [J]. JOM, 1957, 9(4): 503
|
7 |
Agnew S R, Duygulu Ö. Plastic anisotropy and the role of non-basal slip in magnesium alloy AZ31B [J]. Int. J. Plast., 2005, 21: 1161
|
8 |
Zhu G M, Wang L Y, Zhou H, et al. Improving ductility of a Mg alloy via non-basal <a> slip induced by Ca addition [J]. Int. J. Plast., 2019, 120: 164
|
9 |
Liu B Y, Liu F, Yang N, et al. Large plasticity in magnesium mediated by pyramidal dislocations [J]. Science, 2019, 365: 73
|
10 |
Yu M D, Cui Y C, Wang J Y, et al. Critical resolved shear stresses for slip and twinning in Mg-Y-Ca alloys and their effect on the ductility [J]. Int. J. Plast., 2023, 162: 103525
|
11 |
El Kadiri H, Barrett C D, Wang J, et al. Why are $\left\{ 10\bar{1}2 \right\}$ twins profuse in magnesium? [J]. Acta Mater., 2015, 85: 354
|
12 |
Wang J Y, Molina-Aldareguía J M, LLorca J. Effect of Al content on the critical resolved shear stress for twin nucleation and growth in Mg alloys [J]. Acta Mater., 2020, 188: 215
|
13 |
Sułkowski B, Chulist R. Twin-induced stability and mechanical properties of pure magnesium [J]. Mater. Sci. Eng., 2019, A749: 89
|
14 |
Wang T, Zha M, Gao Y P, et al. Deformation mechanisms in a novel multiscale hetero-structured Mg alloy with high strength-ductility synergy [J]. Int. J. Plast., 2023, 170: 103766
|
15 |
Ma E, Liu C. Chemical inhomogeneities in high-entropy alloys help mitigate the strength-ductility trade-off [J]. Prog. Mater. Sci., 2024, 143: 101252
|
16 |
Li B, Zhang Q W, Mathaudhu S N. Basal-pyramidal dislocation lock in deformed magnesium [J]. Scr. Mater., 2017, 134: 37
|
17 |
Bertin N, Tomé C N, Beyerlein I J, et al. On the strength of dislocation interactions and their effect on latent hardening in pure magnesium [J]. Int. J. Plast., 2014, 62: 72
|
18 |
Orozco-Caballero A, Lunt D, Robson J D, et al. How magnesium accommodates local deformation incompatibility: A high-resolution digital image correlation study [J]. Acta Mater., 2017, 133: 367
|
19 |
Zeng Z R, Nie J F, Xu S W, et al. Super-formable pure magnesium at room temperature [J]. Nat. Commun., 2017, 8: 972
doi: 10.1038/s41467-017-01330-9
pmid: 29042555
|
20 |
Wang J, Yuan Y, Chen T, et al. Multi-solute solid solution behavior and its effect on the properties of magnesium alloys [J]. J. Magnes. Alloy., 2022, 10: 1786
|
21 |
Sandlöbes S, Friák M, Korte-Kerzel S, et al. A rare-earth free magnesium alloy with improved intrinsic ductility [J]. Sci. Rep., 2017, 7: 10458
doi: 10.1038/s41598-017-10384-0
pmid: 28874798
|
22 |
Yasi J A, Hector L G, Trinkle D R. First-principles data for solid-solution strengthening of magnesium: From geometry and chemistry to properties [J]. Acta Mater., 2010, 58: 5704
|
23 |
Wu Z X, Ahmad R, Yin B L, et al. Mechanistic origin and prediction of enhanced ductility in magnesium alloys [J]. Science, 2018, 359: 447
doi: 10.1126/science.aap8716
pmid: 29371467
|
24 |
Stanford N, Barnett M R. Solute strengthening of prismatic slip, basal slip and $\left\{ 10\bar{1}2 \right\}$ twinning in Mg and Mg-Zn binary alloys [J]. Int. J. Plast., 2013, 47: 165
|
25 |
Barnett M R. Twinning and the ductility of magnesium alloys: Part II. “Contraction” twins [J]. Mater. Sci. Eng., 2007, A464: 8
|
26 |
Ma X, Zha M, Wang S Q, et al. A rolled Mg-8Al-0.5Zn-0.8Ce alloy with high strength-ductility synergy via engineering high-density low angle boundaries [J]. J. Magnes. Alloy., 2022, 10: 2889
|
27 |
Zha M, Zhang H M, Jia H L, et al. Prominent role of multi-scale microstructural heterogeneities on superplastic deformation of a high solid solution Al-7Mg alloy [J]. Int. J. Plast., 2021, 146: 103108
|
28 |
Dong Q, Luo Z, Zhu H, et al. Basal-plane stacking-fault energies of Mg alloys: A first-principles study of metallic alloying effects [J]. J. Mater. Sci. Technol., 2018, 34: 1773
doi: 10.1016/j.jmst.2018.02.009
|
29 |
Wang C, Zhang H Y, Wang H Y, et al. Effects of doping atoms on the generalized stacking-fault energies of Mg alloys from first-principles calculations [J]. Scr. Mater., 2013, 69: 445
|
30 |
Ding Z G, Zhao G X, Sun H, et al. Alloying effects on the plasticity of magnesium: Comprehensive analysis of influences of all five slip systems [J]. J. Phys.: Condens. Matter, 2020, 32: 015401
|
31 |
Garg P, Adlakha I, Solanki K N. Effect of solutes on ideal shear resistance and electronic properties of magnesium: A first-principles study [J]. Acta Mater., 2018, 153: 327
|
32 |
Zeng Y, Shi O L, Jiang B, et al. Improved formability with theoretical critical shear strength transforming in Mg alloys with Sn addition [J]. J. Alloy. Compd., 2018, 764: 555
|
33 |
Liu Z R, Li D Y. The electronic origin of strengthening and ductilizing magnesium by solid solutes [J]. Acta Mater., 2015, 89: 225
|
34 |
Wu Z X, Curtin W A. Mechanism and energetics of <c + a> dislocation cross-slip in hcp metals [J]. Proc. Natl. Acad. Sci. USA, 2016, 113: 11137
|
35 |
Shang S L, Wang W Y, Zhou B C, et al. Generalized stacking fault energy, ideal strength and twinnability of dilute Mg-based alloys:A first-principles study of shear deformation [J]. Acta Mater., 2014, 67: 168
|
36 |
Ding Z G, Liu W, Sun H, et al. Origins and dissociation of pyramidal <c + a> dislocations in magnesium and its alloys [J]. Acta Mater., 2018, 146: 265
|
37 |
Sandlöbes S, Friák M, Zaefferer S, et al. The relation between ductility and stacking fault energies in Mg and Mg-Y alloys [J]. Acta Mater., 2012, 60: 3011
|
38 |
Wu Z X, Curtin W A. The origins of high hardening and low ductility in magnesium [J]. Nature, 2015, 526: 62
|
39 |
Ma X L, Jiao Q, Kecskes L J, et al. Effect of basal precipitates on extension twinning and pyramidal slip: A micro-mechanical and electron microscopy study of a Mg-Al binary alloy [J]. Acta Mater., 2020, 189: 35
|
40 |
Wang L Y, Huang Z H, Wang H M, et al. Study of slip activity in a Mg-Y alloy by in situ high energy X-ray diffraction microscopy and elastic viscoplastic self-consistent modeling [J]. Acta Mater., 2018, 155: 138
|
41 |
Huang Z H, Wang L Y, Zhou B J, et al. Observation of non-basal slip in Mg-Y by in situ three-dimensional X-ray diffraction [J]. Scr. Mater., 2018, 143: 44
|
42 |
Sabat R K, Brahme A P, Mishra R K, et al. Ductility enhancement in Mg-0.2%Ce alloys [J]. Acta Mater., 2018, 161: 246
|
43 |
Liu Y, Li N, Arul Kumar M, et al. Experimentally quantifying critical stresses associated with basal slip and twinning in magnesium using micropillars [J]. Acta Mater., 2017, 135: 411
|
44 |
Lilleodden E. Microcompression study of Mg (0001) single crystal [J]. Scr. Mater., 2010, 62: 532
|
45 |
Wang J Y, Chen Y W, Chen Z, et al. Deformation mechanisms of Mg-Ca-Zn alloys studied by means of micropillar compression tests [J]. Acta Mater., 2021, 217: 117151
|
46 |
Wang J Y, Li N, Alizadeh R, et al. Effect of solute content and temperature on the deformation mechanisms and critical resolved shear stress in Mg-Al and Mg-Zn alloys [J]. Acta Mater., 2019, 170: 155
doi: 10.1016/j.actamat.2019.03.027
|
47 |
Wu J, Si S S, Takagi K, et al. Study of basal <a> and pyramidal<c + a> slips in Mg-Y alloys using micro-pillar compression [J]. Philos. Mag., 2020, 100: 1454
|
48 |
Chapuis A, Driver J H. Temperature dependency of slip and twinning in plane strain compressed magnesium single crystals [J]. Acta Mater., 2011, 59: 1986
|
49 |
Shin K S, Wang L F, Bian M Z, et al. Effects of temperature on critical resolved shear stresses of slip and twining in Mg single crystal via experimental and crystal plasticity modeling [J]. J. Magnes. Alloy., 2023, 11: 2027
|
50 |
Qi X X, Li Y X, Xu X Y, et al. Enhancing strength-ductility synergy in a Mg-Gd-Y-Zr alloy at sub-zero temperatures via high dislocation density and shearable precipitates [J]. J. Mater. Sci. Technol., 2023, 166: 123
doi: 10.1016/j.jmst.2023.05.029
|
51 |
Luo X, Feng Z Q, Yu T B, et al. Transitions in mechanical behavior and in deformation mechanisms enhance the strength and ductility of Mg-3Gd [J]. Acta Mater., 2020, 183: 398
|
52 |
Zhu G M, Wang L Y, Sun Y J, et al. Grain-size effect on the deformation of Mg-3Al-3Sn alloy: Experiments and elastic-viscoplastic self-consistent modeling [J]. Int. J. Plast., 2021, 143: 103018
|
53 |
Cheng R S, Pan H C, Xie D S, et al. Research progress of newly developed high-strength and low-alloyed magnesium alloy [J]. Mater. China, 2020, 39: 31
|
|
程仁山, 潘虎成, 谢东升 等. 新型高强度低合金化镁合金研究进展 [J]. 中国材料进展, 2020, 39: 31
|
54 |
Zheng R X, Du J P, Gao S, et al. Transition of dominant deformation mode in bulk polycrystalline pure Mg by ultra-grain refinement down to sub-micrometer [J]. Acta Mater., 2020, 198: 35
|
55 |
Liu B Y, Zhang Z, Liu F, et al. Rejuvenation of plasticity via deformation graining in magnesium [J]. Nat. Commun., 2022, 13: 1060
|
56 |
Zhu G M, Wang L Y, Wang J, et al. Highly deformable Mg-Al-Ca alloy with Al2Ca precipitates [J]. Acta Mater., 2020, 200: 236
|
57 |
Luo S Z, Wang L Y, Wang J Y, et al. Micro-compression of Al2Ca particles in a Mg-Al-Ca alloy [J]. Materialia, 2022, 21: 101300
|
58 |
Chen R, Sandlöbes S, Zeng X Q, et al. Room temperature deformation of LPSO structures by non-basal slip [J]. Mater. Sci. Eng., 2017, A682: 354
|
59 |
Li Q, Song J, Chen Y W, et al. In-situ TEM characterization of basal dislocations between nano-spaced long-period stacking ordered phases in MgYZn alloy [J]. Scr. Mater., 2023, 235: 115601
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|