Please wait a minute...
Acta Metall Sin  2024, Vol. 60 Issue (3): 311-322    DOI: 10.11900/0412.1961.2022.00010
Research paper Current Issue | Archive | Adv Search |
Effect of Multi-Pass Compression Deformation on Microstructure Evolution of AZ80 Magnesium Alloy
LI Zhenliang(), ZHANG Xinlei, TIAN Dongkuo
School of Materials and Metallurgy, Inner Mongolia University of Science and Technology, Baotou 014010, China
Cite this article: 

LI Zhenliang, ZHANG Xinlei, TIAN Dongkuo. Effect of Multi-Pass Compression Deformation on Microstructure Evolution of AZ80 Magnesium Alloy. Acta Metall Sin, 2024, 60(3): 311-322.

Download:  HTML  PDF(6964KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Magnesium alloy has a hexagonal close-packed crystal structure, and its plasticity is poor at room temperature. This is primarily due to the small number of movable slip systems at room temperature, which is prone to deformation texture. Therefore, temperature and compression deformation play an important role in the regulation of plastic deformation. In this work, AZ80 magnesium alloy was subjected to multi-pass compression deformation at a constant temperature and step-down temperature. The microstructure of the AZ80 magnesium alloy with different deformation degrees and deformation paths was observed and analyzed using EBSD. In addition, the grain boundary, dislocation density, Schmid factor, and polar figure evolution of the AZ80 magnesium alloy during hot compression deformation were primarily studied. Results show that the comprehensive effect of grain size, twinning, and texture on the plastic regulation of AZ80 magnesium alloy is better than that of single dynamic recrystallization. Moreover, three-time constant-temperature deformation (ε = 0.6) promotes dynamic recrystallization, whereas three-time step-cooling deformation (ε = 0.6) promotes plastic deformation. More 86°{101¯2} <12¯10> tensile twins are produced by reduced grain orientation difference, increased number of low-angle grain boundaries, and increased geometrically necessary dislocation density, which are important factors affecting the plastic regulation of three-time step-cooling deformation (ε = 0.6).

Key words:  AZ80      grain boundary      misorientation      geometrically necessary dislocation density      plastic regulation     
Received:  10 January 2022     
ZTFLH:  TG146.2  
Fund: National Natural Science Foundation of China(51364032);Inner Mongolia Natural Science Foundation(2022MS05028)
Corresponding Authors:  LI Zhenliang, professor, Tel: (0472)5951572, E-mail: lizhenliang@imust.edu.cn

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2022.00010     OR     https://www.ams.org.cn/EN/Y2024/V60/I3/311

Fig.1  Process maps of three-step deforming process with constant-temperature (a) and three-step deforming process with step-cooling (b) (P—pass, ε—strain)
Fig.2  Microstructure evolutions of constant-temperature deformation process at ε = 0.2 (a), ε = 0.4 (b), and ε = 0.6 (c); and step-cooling deformation process at ε = 0.6 (d)
Fig.3  Average grain sizes (a) and average grain shape aspect ratios (b) of constant-temperature and step-cooling deformation processes
Fig.4  Grain boundaries distributions of constant-temperature deformation process at ε = 0.2 (a), ε = 0.4 (b), and ε = 0.6 (c); and step-cooling deformation process at ε = 0.6 (d) (The green lines represent subgrain boundaries, and the grain boundaries indicated by the red arrows are the bow-bend grain boundaries)
Fig.5  Grain size diagrams of constant-temperature deformation process at ε = 0.2 (a), ε = 0.4 (b), and ε = 0.6 (c); and step-cooling deformation process at ε = 0.6 (d) (The colored small grains are dynamically recrystallized grains, the red grains are basal orientation, and the other colored grains are non-basal orientation)
Fig.6  Grain boundary ratios (a) and dynamic recrystallization ratios (b) of constant-temperature and step-cooling deformation processes
Fig.7  Misorientation distributions of constant-temperature deformation process at ε = 0.2 (a), ε = 0.4 (b), and ε = 0.6 (c); and step-cooling deformation process at ε = 0.6 (d)
Fig.8  Geometrically necessary dislocation (GND) density distribution maps of constant-temperature deformation process at ε = 0.2 (a), ε = 0.4 (b), and ε = 0.6 (c); and step-cooling deformation process at ε = 0.6 (d) (The green is the dislocation concentration area, and the blue is the dislocation-free area)
Fig.9  Geometrical necessary dislocation density (ρGND) statistical maps of constant-temperature deformation process at ε = 0.2 (a), ε = 0.4 (b), and ε = 0.6 (c); and step-cooling deformation process at ε = 0.6 (d)
Fig.10  Schmid factor distribution maps of constant-temperature deformation process at ε = 0.2 (a), ε = 0.4 (b), and ε = 0.6 (c); and step-cooling deformation process at ε = 0.6 (d) (The blue is hard orientation, the red is soft orientation, and other colors are between hard orientation and soft orientation)
Fig.11  Schmid factor statistical maps of constant-temperature deformation process at ε = 0.2 (a), ε = 0.4 (b), and ε = 0.6 (c); and step-cooling deformation process at ε = 0.6 (d)
Fig.12  Pole figures of constant-temperature deformation process at ε = 0.2 (a), ε = 0.4 (b), and ε = 0.6 (c); and step-cooling deformation process at ε = 0.6 (d) (ED—extrusion direction, TD—transverse direction)
Fig.13  Orientation distribution function (ODF) maps of constant-temperature deformation process at ε = 0.2 (a), ε = 0.4 (b), and ε = 0.6 (c); and step-cooling deformation process at ε = 0.6 (d) (The red area is strong texture, the blue area is weak texture, and the texture intensity of the green area is between them; φ2—Euler angle)
1 Yang Z, Li J P, Zhang J X, et al. Review on research and development of magnesium alloys [J]. Acta Metall. Sin. (Engl. Lett.), 2008, 21: 313
doi: 10.1016/S1006-7191(08)60054-X
2 Cai Y, Sun C Y, Wan L, et al. Study on the dynamic recrystallization softening behavior of AZ80 magnesium alloy [J]. Acta Metall. Sin., 2016, 52: 1123
doi: 10.11900/0412.1961.2016.00051
蔡 贇, 孙朝阳, 万 李 等. AZ80镁合金动态再结晶软化行为研究 [J]. 金属学报, 2016, 52: 1123
3 Yasi J A, Hector Jr L G, Trinkle D R. First-principles data for solid-solution strengthening of magnesium: From geometry and chemistry to properties [J]. Acta Mater., 2010, 58: 5704
doi: 10.1016/j.actamat.2010.06.045
4 Beer A G, Barnett M R. The post-deformation recrystallization behaviour of magnesium alloy Mg-3Al-1Zn [J]. Scr. Mater., 2009, 61: 1097
doi: 10.1016/j.scriptamat.2009.09.002
5 Guo Q, Yan H G, Chen Z H, et al. Grain refinement in as-cast AZ80 Mg alloy under large strain deformation [J]. Mater. Charact., 2007, 58: 162
doi: 10.1016/j.matchar.2006.04.013
6 Li J Q, Liu J, Cui Z S. Microstructures and mechanical properties of AZ61 magnesium alloy after isothermal multidirectional forging with increasing strain rate [J]. Mater. Sci. Eng., 2015, A643: 32
7 Zhao Z D, Chen Q, Hu C K, et al. Microstructure and mechanical properties of SPD-processed an as-cast AZ91D+Y magnesium alloy by equal channel angular extrusion and multi-axial forging [J]. Mater. Des., 2009, 30: 4557
doi: 10.1016/j.matdes.2009.04.023
8 Nie X, Dong S, Wang F H, et al. Effects of holding time and Zener-Hollomon parameters on deformation behavior of cast Mg-8Gd-3Y alloy during double-pass hot compression [J]. J. Mater. Sci. Technol., 2018, 34: 2035
doi: 10.1016/j.jmst.2018.03.001
9 Zhang J L, Xie H, Ma Y, et al. Grain growth model of ultra-fine grain AZ80 magnesium alloy multi-directionally forged during the isothermal heating process [J]. Mater. Sci., 2019, 25: 1392
doi: 10.1007/BF00585455
10 Deng L P, Cui K X, Wang B S, et al. Microstructure and texture evolution of AZ31 Mg alloy processed by multi-pass compressing under room temperature [J]. Acta Metall. Sin., 2019, 55: 976
邓丽萍, 崔凯旋, 汪炳叔 等. AZ31镁合金室温多道次压缩过程微观组织和织构演变的研究 [J]. 金属学报, 2019, 55: 976
doi: 10.11900/0412.1961.2019.00050
11 Song G S, Zhao Y Y, Zhang S H, et al. Effect of texture on deformation mechanism of AZ31 Magnesium alloy warm compression [J]. Chin. J. Nonferrous Met., 2018, 28: 2206
宋广胜, 赵原野, 张士宏 等. 织构对AZ31镁合金温热压缩变形机制影响 [J]. 中国有色金属学报, 2018, 28: 2206
12 Tang L Q, Jiang F L, Teng J, et al. Strain path dependent evolutions of microstructure and texture in AZ80 magnesium alloy during hot deformation [J]. J. Alloys Compd., 2019, 806: 292
doi: 10.1016/j.jallcom.2019.07.262
13 Zhou X J, Zhang J, Chen X M, et al. Fabrication of high-strength AZ80 alloys via multidirectional forging in air with no need of ageing treatment [J]. J. Alloys Compd., 2019, 787: 551
doi: 10.1016/j.jallcom.2019.02.133
14 Khosravani A, Scott J, Miles M P, et al. Twinning in magnesium alloy AZ31B under different strain paths at moderately elevated temperatures [J]. Int. J. Plast., 2013, 45: 160
doi: 10.1016/j.ijplas.2013.01.009
15 Yan Z F, Wang D H, He X L, et al. Deformation behaviors and cyclic strength assessment of AZ31B magnesium alloy based on steady ratcheting effect [J]. Mater. Sci. Eng., 2018, A723: 212
16 Quan G Z, Shi Y, Wang Y X, et al. Constitutive modeling for the dynamic recrystallization evolution of AZ80 magnesium alloy based on stress-strain data [J]. Mater. Sci. Eng., 2011, A528: 8051
17 Ma X L, Huang C X, Moering J, et al. Mechanical properties of copper/bronze laminates: Role of interfaces [J]. Acta Mater., 2016, 116: 43
doi: 10.1016/j.actamat.2016.06.023
18 Xie C, Wang Y N, Fang Q H, et al. Effects of cooperative grain boundary sliding and migration on the particle cracking of fine-grained magnesium alloys [J]. J. Alloys Compd., 2017, 704: 641
doi: 10.1016/j.jallcom.2017.02.057
19 Khosravani A, Fullwood D T, Adams B L, et al. Nucleation and propagation of {10 1 ¯ 2} twins in AZ31 magnesium alloy [J]. Acta Mater., 2015, 100: 202
doi: 10.1016/j.actamat.2015.08.024
20 Sun D K, Chang C P, Kao P W. Microstructural aspects of grain boundary bulge in a dynamically recrystallized Mg-Al-Zn alloy [J]. Metall. Mater. Trans., 2010, 41A: 1864
21 Liu Z G, Li P J, Xiong L T, et al. High-temperature tensile deformation behavior and microstructure evolution of Ti55 titanium alloy [J] Mater. Sci. Eng., 2017, A680: 259
22 Rupert T J, Gianola D S, Gan Y, et al. Experimental observations of stress-driven grain boundary migration [J]. Science, 2009, 326: 1686
doi: 10.1126/science.1178226 pmid: 20019286
23 Yu D L, Zhang D F, Luo Y X, et al. Microstructure evolution during high cycle fatigue in Mg-6Zn-1Mn alloy [J]. Mater. Sci. Eng., 2016, A658: 108
24 Yang P, Hu Y S, Cui F E. Texture investigation on the deformation mechanisms in magnesium alloy AZ31 deformed at high temperatures [J]. Chin. J. Mater. Res., 2004, 18: 52
杨 平, 胡轶嵩, 崔凤娥. 镁合金AZ31高温形变机制的织构分析 [J]. 材料研究学报, 2004, 18: 52
25 Chen Z H. Wrought Magnesium Alloy [M]. Beijing: Chemical Industry Press, 2005: 329
陈振华. 变形镁合金 [M]. 北京: 化学工业出版社, 2005: 329
26 Li Z L, Tian D K. Microstructure evolution of AZ80 magnesium alloy under different states [J]. Rare Met. Mater. Eng., 2021, 50: 639
李振亮, 田董扩. 不同状态条件下AZ80镁合金微观组织演化 [J]. 稀有金属材料与工程, 2021, 50: 639
[1] REN Junqiang, SHAO Shan, WANG Qi, LU Xuefeng, XUE Hongtao, TANG Fuling. Molecular Dynamics Simulation of Tensile Mechanical Properties and Deformation Mechanism of Oxygen-Containing Nano-Polycrystalline α-Ti[J]. 金属学报, 2024, 60(2): 220-230.
[2] FENG Xiaozheng, WANG Weiguo, Gregory S. Rohrer, CHEN Song, HONG Lihua, LIN Yan, WANG Zongpu, ZHOU Bangxin. Effects of Grain Growth on the {111}/{111} Near Singular Boundaries in High Purity Aluminum[J]. 金属学报, 2024, 60(1): 80-94.
[3] CHANG Songtao, ZHANG Fang, SHA Yuhui, ZUO Liang. Recrystallization Texture Competition Mediated by Segregation Element in Body-Centered Cubic Metals[J]. 金属学报, 2023, 59(8): 1065-1074.
[4] ZHANG Haifeng, YAN Haile, FANG Feng, JIA Nan. Molecular Dynamic Simulations of Deformation Mechanisms for FeMnCoCrNi High-Entropy Alloy Bicrystal Micropillars[J]. 金属学报, 2023, 59(8): 1051-1064.
[5] XU Yongsheng, ZHANG Weigang, XU Lingchao, DAN Wenjiao. Simulation of Deformation Coordination and Hardening Behavior in Ferrite-Ferrite Grain Boundary[J]. 金属学报, 2023, 59(8): 1042-1050.
[6] WANG Zongpu, WANG Weiguo, Rohrer Gregory S, CHEN Song, HONG Lihua, LIN Yan, FENG Xiaozheng, REN Shuai, ZHOU Bangxin. {111}/{111} Near Singular Boundaries in an Al-Zn-Mg-Cu Alloy Recrystallized After Rolling at Different Temperatures[J]. 金属学报, 2023, 59(7): 947-960.
[7] LI Fulin, FU Rui, BAI Yunrui, MENG Lingchao, TAN Haibing, ZHONG Yan, TIAN Wei, DU Jinhui, TIAN Zhiling. Effects of Initial Grain Size and Strengthening Phase on Thermal Deformation and Recrystallization Behavior of GH4096 Superalloy[J]. 金属学报, 2023, 59(7): 855-870.
[8] LI Xin, JIANG He, YAO Zhihao, DONG Jianxin. Theoretical Calculation and Analysis of the Effect of Oxygen Atom on the Grain Boundary of Superalloy Matrices Ni, Co and NiCr[J]. 金属学报, 2023, 59(2): 309-318.
[9] YANG Du, BAI Qin, HU Yue, ZHANG Yong, LI Zhijun, JIANG Li, XIA Shuang, ZHOU Bangxin. Fractal Analysis of the Effect of Grain Boundary Character on Te-Induced Brittle Cracking in GH3535 Alloy[J]. 金属学报, 2023, 59(2): 248-256.
[10] LIU Lujun, LIU Zheng, LIU Renhui, LIU Yong. Grain Boundary Structure and Coercivity Enhancement of Nd90Al10 Alloy Modified NdFeB Permanent Magnets by GBD Process[J]. 金属学报, 2023, 59(11): 1457-1465.
[11] WANG Jiangwei, CHEN Yingbin, ZHU Qi, HONG Zhe, ZHANG Ze. Grain Boundary Dominated Plasticity in Metallic Materials[J]. 金属学报, 2022, 58(6): 726-745.
[12] LI Haiyong, LI Saiyi. Effect of Temperature on Migration Behavior of <111> Symmetric Tilt Grain Boundaries in Pure Aluminum Based on Molecular Dynamics Simulations[J]. 金属学报, 2022, 58(2): 250-256.
[13] HU Biao, ZHANG Huaqing, ZHANG Jin, YANG Mingjun, DU Yong, ZHAO Dongdong. Progress in Interfacial Thermodynamics and Grain Boundary Complexion Diagram[J]. 金属学报, 2021, 57(9): 1199-1214.
[14] LIU Zhongwu, HE Jiayi. Several Issues on the Development of Grain Boundary Diffusion Process for Nd-Fe-B Permanent Magnets[J]. 金属学报, 2021, 57(9): 1155-1170.
[15] NI Ke, YANG Yinhui, CAO Jianchun, WANG Liuhang, LIU Zehui, QIAN Hao. Softening Behavior of 18.7Cr-1.0Ni-5.8Mn-0.2N Low Nickel-Type Duplex Stainless Steel During Hot Compression Deformation Under Large Strain[J]. 金属学报, 2021, 57(2): 224-236.
No Suggested Reading articles found!