Please wait a minute...
Acta Metall Sin  2025, Vol. 61 Issue (2): 226-234    DOI: 10.11900/0412.1961.2022.00571
Research paper Current Issue | Archive | Adv Search |
Creep Behavior of a Ni-Based Superalloy with Strengthening of γ' and γ'' Phases
ZHOU Shengyu1, HU Minghao1, LI Chong1(), DING Haimin2, GUO Qianying1, LIU Yongchang1
1 School of Materials Science and Engineering, Tianjin University, Tianjin 300354, China
2 Hebei Key Laboratory of Electric Machinery Health Maintenance and Failure Prevention, North China Electric Power University, Baoding 071003, China
Cite this article: 

ZHOU Shengyu, HU Minghao, LI Chong, DING Haimin, GUO Qianying, LIU Yongchang. Creep Behavior of a Ni-Based Superalloy with Strengthening of γ' and γ'' Phases. Acta Metall Sin, 2025, 61(2): 226-234.

Download:  HTML  PDF(4220KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Ni-based superalloys have shown great application potential as component materials in aircraft engines because of their excellent mechanical properties at high temperatures. With the development of engine and power plant boiler tubes, the high-temperature creep resistance of nickel-based superalloys has become an important indicator for evaluating the mechanical properties of superalloys. In this study, the creep behavior of the as-cast Ni-based superalloy with the coprecipitation of γ′ and γ″ phases at 750 oC and 120 MPa was investigated. The results show that the creep deformation behavior and creep property change with the size of the γ'/γ'' phases. A number of dislocations are cut into the γ'/γ'' phases, forming continuous stacking faults in the γ channel and γ'/γ'' phases when a high amount of compact γ'/γ'' phases are precipitated, leading a inferior creep property. Increasing the size of the γ'/γ'' phases, the dislocations are easily cut in the γ′ phase and isolated stacking faults are formed in the γ′ phase, which significantly enhances the creep property. Further increasing the size of the γ′ phase, the dislocations are piled up on the interface of the γ/γ′ phases, and the γ′ phase is looped with dislocations, which decreases the creep property. Given the precipitation of the deleterious Laves phases, the grain boundaries (GBs) are weakened. However, the stretch of cracks is restrained, and the creep properties of the alloy are enhanced because of the moderate needle-like η/δ phases in the GBs. The precipitation of the overdose η/δ phases provides a favorable location for crack nucleation and accelerates alloy failure.

Key words:  Ni-based superalloy      γ'/γ'' phases      creep behavior      dislocation      microstructure evolution     
Received:  07 November 2022     
ZTFLH:  TG132.3  
Fund: National Natural Science Foundation of China(52122409);Hebei Key Laboratory of Electric Machinery Health Maintenance & Failure Prevention Fund(KF2021-03);Tianjin Natural Science Foundation(20JCYBJC00950)
Corresponding Authors:  LI Chong, professor, Tel: 13021398676, E-mail: lichongme@tju.edu.cn

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2022.00571     OR     https://www.ams.org.cn/EN/Y2025/V61/I2/226

Fig.1  SEM images of as-cast Ni-based superalloy
(a) interdendritic region
(b) γ′/γ″ phases
Fig.2  SEM images (a, d, g) and TEM images with different magnifications (b, c, e, f, h, i) of Ni-based superalloy after heat treatment (GB—grain boundary)
(a-c) HDA-7 (d-f) HDA-8 (g-i) HDA-9
Fig.3  High-temperature creep curves (750 oC, 120 MPa) of Ni-based superalloy specimens after different heat treatments
(a) creep time-strain curves (b) creep time-strain rate curves
SpecimenCreep life / hCreep strain / %Steady creep rate / h-1
HDA-7257.60.21.1 × 10-5
HDA-81898.60.74.9 × 10-7
HDA-91793.51.52.2 × 10-6
Table 1  High-temperature creep properties for different specimens
Fig.4  TEM images of γ'/γ'' phases of HDA-7 (a), HDA-8 (b), and HDA-9 (c) specimens after crept, and the average sizes of γ' (d) and γ'' (e) phases
Fig.5  TEM images of microstructures of HDA-7 (a-c), HDA-8 (d, e), and HDA-9 (f, g) specimens after creep (SFs—stacking faults)
Fig.6  SEM images of creep fracture surfaces of HDA-7 (a-c), HDA-8 (d-f), and HDA-9 (g-i) specimens with different magnifications
Fig.7  EBSD-KAM maps of HDA-7 (a), HDA-8 (b), and HDA-9 (c) specimens (KAM—kernel average misorientation, σ—creep stress)
Fig.8  SEM images of longitudinal sections near the fractures of HDA-7 (a), HDA-8 (b), and HDA-9 (c)
Fig.9  Schematics of microstructure evolution, crack propagation, and deformation mechanism before (a-c) and after (d-f) creep
(a, d) HDA-7 (b, e) HDA-8 (c, f) HDA-9
1 Liu J, Zhang S Q, Wang D, et al. Effect of Ta on the microstructure and creep properties of a hot-corrosion resistant Ni-based single-crystal superalloy after long-term exposure [J]. Acta Metall. Sin., 2024, 60: 179
doi: 10.11900/0412.1961.2022.00349
刘 静, 张思倩, 王 栋 等. Ta对一种抗热腐蚀镍基单晶高温合金长时热暴露组织和蠕变性能的影响 [J]. 金属学报, 2024, 60: 179
2 Grant B M B, Francis E M, Da Fonseca J Q, et al. Deformation behaviour of an advanced nickel-based superalloy studied by neutron diffraction and electron microscopy [J]. Acta Mater., 2012, 60: 6829
3 Fan L H, Li J L, Sun J D, et al. Effect of Cr/Mo/W on the thermal stability of γ/γ′ coherent microstructure in Ni-based superalloys [J]. Acta Metall. Sin., 2024, 60: 453
凡莉花, 李金临, 孙九栋 等. Cr/Mo/W元素对镍基高温合金γ/γ′共格组织热稳定性的影响 [J]. 金属学报, 2024, 60: 453
doi: 10.11900/0412.1961.2022.00064
4 Yang Z K, Wang H, Zhang Y W, et al. Effect of Ta content on high temperature creep deformation behaviors and properties of PM nickel base superalloys [J]. Acta Metall. Sin., 2021, 57: 1027
doi: 10.11900/0412.1961.2020.00351
杨志昆, 王 浩, 张义文 等. Ta含量对镍基粉末高温合金高温蠕变变形行为和性能的影响 [J]. 金属学报, 2021, 57: 1027
doi: 10.11900/0412.1961.2020.00351
5 Li J, Wu Y T, Liu Y C, et al. Enhancing tensile properties of wrought Ni-based superalloy ATI 718Plus at elevated temperature via morphology control of η phase [J]. Mater. Charact., 2020, 169: 110547
6 Yang J J, Zhang C S, Li H J, et al. Effect of tension-torsion coupled loading on the mechanical properties and deformation mechanism of GH4169 superalloys [J]. Acta Metall. Sin., 2024, 60: 30
doi: 10.11900/0412.1961.2022.00142
杨俊杰, 张昌盛, 李洪佳 等. 拉伸-扭转复合加载对镍基高温合金GH4169力学性能与变形机理的影响[J]. 金属学报, 2024, 60: 30
doi: 10.11900/0412.1961.2022.00142
7 Hao Z B, Ge C C, Li X G, et al. Effect of heat treatment on microstructure and mechanical properties of nickel-based powder metallurgy superalloy processed by selective laser melting [J]. Acta Metall. Sin., 2020, 56: 1133
doi: 10.11900/0412.1961.2019.00365
郝志博, 葛昌纯, 黎兴刚 等. 热处理对选区激光熔化镍基粉末高温合金组织与力学性能的影响 [J]. 金属学报, 2020, 56: 1133
doi: 10.11900/0412.1961.2019.00365
8 Hou K L, Wang M, Ou M Q, et al. Effects of microstructure evolution on the deformation mechanisms and tensile properties of a new Ni-base superalloy during aging at 800 oC [J]. J. Mater. Sci. Technol., 2021, 68: 40
9 Zhang P, Yuan Y, Zhong L, et al. Microstructural stability and tensile properties of a new γ′-hardened Ni-Fe-base superalloy [J]. Materialia, 2021, 16: 101061
10 Liu Y C, Zhang H J, Guo Q Y, et al. Microstructure evolution of Inconel 718 superalloy during hot working and its recent development tendency [J]. Acta Metall. Sin., 2018, 54: 1653
doi: 10.11900/0412.1961.2018.00340
刘永长, 张宏军, 郭倩颖 等. Inconel 718变形高温合金热加工组织演变与发展趋势 [J]. 金属学报, 2018, 54: 1653
doi: 10.11900/0412.1961.2018.00340
11 Zhao L H, Tan Y, Shi S, et al. Microsegregation behavior of Inconel 718 superalloy prepared by electron beam smelting layered solidification technology [J]. J. Alloys Compd., 2020, 833: 155019
12 Shi R P, Mcallister D P, Zhou N, et al. Growth behavior of γ'/γ'' coprecipitates in Ni-base superalloys [J]. Acta Mater., 2019, 164: 220
13 Liu Y C, Guo Q Y, Li C, et al. Recent progress on evolution of precipitates in Inconel 718 superalloy [J]. Acta Metall. Sin., 2016, 52: 1259
刘永长, 郭倩颖, 李 冲 等. Inconel 718高温合金中析出相演变研究进展 [J]. 金属学报, 2016, 52: 1259
doi: 10.11900/0412.1961.2016.00290
14 Im S Y, Jun S Y, Lee J W, et al. Unidirectional columnar microstructure and its effect on the enhanced creep resistance of selective electron beam melted Inconel 718 [J]. J. Alloys Compd., 2020, 817: 153320
15 Shi J J, Li X, Zhang Z X, et al. Study on the microstructure and creep behavior of Inconel 718 superalloy fabricated by selective laser melting [J]. Mater. Sci. Eng., 2019, A765: 138282
16 Hou J S, Zhang Y L, Guo J T, et al. High temperature creep behavior of cast Ni base superalloy K44 [J]. Acta Metall. Sin., 2004, 40: 579
侯介山, 张玉龙, 郭建亭 等. 铸造镍基合金K44的高温蠕变行为 [J]. 金属学报, 2004, 40: 579
17 Xie J, Tian S G, Shang L J, et al. Creep behaviors and role of dislocation network in a powder metallurgy Ni-based superalloy during medium-temperature [J]. Mater. Sci. Eng., 2014, A606: 304
18 Song X Q, Tang L Y, Chen Z, et al. Micro-mechanism during long-term creep of a precipitation-strengthened Ni-based superalloy [J]. J. Mater. Sci., 2017, 52: 4587
19 Chen K, Dong J X, Yao Z H, et al. Creep performance and damage mechanism for Allvac 718Plus superalloy [J]. Mater. Sci. Eng., 2018, A738: 308
20 Caliari F R, Candioto K C G, Couto A A, et al. Effect of double aging heat treatment on the short-term creep behavior of the Inconel 718 [J]. J. Mater. Eng. Perform., 2016, 25: 2307
21 Wang Q, Ge S, Wu D Y, et al. Evolution of microstructural characteristics during creep behavior of Inconel 718 alloy [J]. Mater. Sci. Eng., 2022, A857: 143859
22 Shingledecker J P, Evans N D, Pharr G M. Influences of composition and grain size on creep-rupture behavior of Inconel® alloy 740 [J]. Mater. Sci. Eng., 2013, A578: 277
23 Wang L, Mao K Y, Tortorelli P F, et al. Effect of heterogeneous microstructure on the tensile and creep performances of cast Haynes 282 alloy [J]. Mater. Sci. Eng., 2021, A828: 142099
24 Zhou S Y, Hu M H, Li C, et al. Microstructure-performance relationships in Ni-based superalloy with coprecipitation of γ' and γ'' phases [J]. Mater. Sci. Eng., 2022, A855: 143954
25 Yang J X, Li J G, Wang M, et al. Effects of heat treatment process on the microstructure and properties of a new cast nickel-based superalloy [J]. Acta Metall. Sin., 2012, 48: 654
杨金侠, 李金国, 王 猛 等. 热处理工艺对一种新型铸造镍基高温合金的组织和性能影响 [J]. 金属学报, 2012, 48: 654
doi: 10.3724/SP.J.1037.2012.00061
26 Shin K Y, Kim J H, Terner M, et al. Effects of heat treatment on the microstructure evolution and the high-temperature tensile properties of Haynes 282 superalloy [J]. Mater. Sci. Eng., 2019, A751: 311
27 Liu X D, Fan J K, Song Y L, et al. High-temperature tensile and creep behaviour of Inconel 625 superalloy sheet and its associated deformation-failure micromechanisms [J]. Mater. Sci. Eng., 2022, A829: 14152
28 Zhang J, Wang L, Wang D, et al. Recent progress in research and development of nickel-based single crystal superalloys [J]. Acta Metall. Sin., 2019, 55: 1077
张 健, 王 莉, 王 栋 等. 镍基单晶高温合金的研发进展 [J]. 金属学报, 2019, 55: 1077
29 Yu X B, Lin X, Liu F C, et al. Influence of post-heat-treatment on the microstructure and fracture toughness properties of Inconel 718 fabricated with laser directed energy deposition additive manufacturing [J]. Mater. Sci. Eng., 2020, A798: 140092
30 Le W, Chen Z W, Yan K, et al. Early evolution of δ phase and coarse γ″ phase in Inconel 718 alloy with high temperature ageing [J]. Mater. Charact., 2021, 180: 111403
31 Cui L Q, Yu J J, Liu J L, et al. The creep deformation mechanisms of a newly designed nickel-base superalloy [J]. Mater. Sci. Eng., 2018, A710: 309
32 Zhang H J, Li C, Guo Q Y, et al. Improving creep resistance of nickel-based superalloy Inconel 718 by tailoring gamma double prime variants [J]. Scr. Mater., 2019, 164: 66
33 Huang W P, Yang J J, Yang H H, et al. Heat treatment of Inconel 718 produced by selective laser melting: Microstructure and mechanical properties [J]. Mater. Sci. Eng., 2019, A750: 98
34 Chu Z K, Yu J J, Sun X F, et al. Tensile property and deformation behavior of a directionally solidified Ni-base superalloy [J]. Mater. Sci. Eng., 2010, A527: 3010
35 Cao G H, Sun T Y, Wang C H, et al. Investigations of γ′, γ″ and δ precipitates in heat-treated Inconel 718 alloy fabricated by selective laser melting [J]. Mater. Charact., 2018, 136: 398
36 Hou K L, Ou M Q, Wang M, et al. Precipitation of η phase and its effects on stress rupture properties of K4750 alloy [J]. Mater. Sci. Eng., 2019, A763: 138137
37 Whitmore L, Ahmadi M R, Guetaz L, et al. The microstructure of heat-treated nickel-based superalloy 718Plus [J]. Mater. Sci. Eng., 2014, A610: 39
38 Wu Y S, Qin X Z, Wang C S, et al. Microstructural evolution and its influence on the impact toughness of GH984G alloy during long-term thermal exposure [J]. J. Mater. Sci. Technol., 2021, 60: 61
doi: 10.1016/j.jmst.2020.06.005
[1] GUO Xingxing, SHUAI Meirong, CHU Zhibing, LI Yugui, XIE Guangming. Microstructure Evolution Near Interface and the Element Diffusion Dynamics of the Composite Stainless Steel Rebar[J]. 金属学报, 2025, 61(2): 336-348.
[2] YU Dong, MA Weilong, WANG Yali, WANG Jincheng. Phase Field Modeling of Microstructure Evolution During Solidification and Subsequent Solid-State Phase Transformation of Au-Pt Alloys[J]. 金属学报, 2025, 61(1): 109-116.
[3] HAN Ying, WU Yuhang, ZHAO Chunlu, ZHANG Jingshi, LI Zhenmin, RAN Xu. High-Temperature Creep Behavior of Selective Laser Melting Manufactured Al-Si-Fe-Mn-Ni Alloy[J]. 金属学报, 2025, 61(1): 154-164.
[4] WANG Lin, WEI Chen, WANG Lei, WANG Jun, LI Jinshan. Simulation of Core-Shell Structure Evolution of Cu-Co Immiscible Alloys[J]. 金属学报, 2024, 60(9): 1239-1249.
[5] WANG Lijia, HU Li, MIAO Tianhu, ZHOU Tao, HE Qubo, LIU Xiangguo. Effect of Pre-Deformation on Mechanical Behavior and Microstructure Evolution of AZ31 Mg Alloy Sheet with Bimodal Non-Basal Texture at Room Temperature[J]. 金属学报, 2024, 60(7): 881-889.
[6] BAI Zhiwen, DING Zhigang, ZHOU Ailong, HOU Huaiyu, LIU Wei, LIU Feng. Molecular Dynamics Simulation of Thermo-Kinetics of Tensile Deformation of α-Fe Single Crystal[J]. 金属学报, 2024, 60(6): 848-856.
[7] YANG Weiyang, LI Xianhao, ZHAO Pengfei, YU Haibin, ZHAO Songshan, LUO Haiwen. Changes in the Microstructures and Inhibitors of Grain-Oriented Silicon Steel Under Different Normalizing Processes[J]. 金属学报, 2024, 60(5): 605-615.
[8] FAN Lihua, LI Jinlin, SUN Jiudong, LV Mengtian, WANG Qing, DONG Chuang. Effect of Cr/Mo/W on the Thermal Stability ofγ/γ′Coherent Microstructure in Ni-Based Superalloys[J]. 金属学报, 2024, 60(4): 453-463.
[9] LI Zhenliang, ZHANG Xinlei, TIAN Dongkuo. Effect of Multi-Pass Compression Deformation on Microstructure Evolution of AZ80 Magnesium Alloy[J]. 金属学报, 2024, 60(3): 311-322.
[10] BAI Juju, LI Jianjian, FU Chonglong, CHEN Shuangjian, LI Zhijun, LIN Jun. Effect of He Ion Irradiation on the GH3535 Weld Metal at High Temperature[J]. 金属学报, 2024, 60(3): 299-310.
[11] LONG Jiangdong, DUAN Huichao, ZHAO Peng, ZHANG Rui, ZHENG Tao, QU Jinglong, CUI Chuanyong, DU Kui. Basal Stacking Faults of μ Phase in Ni-Based Superalloy GH4151[J]. 金属学报, 2024, 60(2): 167-178.
[12] REN Junqiang, SHAO Shan, WANG Qi, LU Xuefeng, XUE Hongtao, TANG Fuling. Molecular Dynamics Simulation of Tensile Mechanical Properties and Deformation Mechanism of Oxygen-Containing Nano-Polycrystalline α-Ti[J]. 金属学报, 2024, 60(2): 220-230.
[13] GENG Ruwei, WANG Lin, WEI Zhengying, MA Ninshu. Microstructure Evolution and Epitaxial Growth Characteristics of Droplet and Arc Deposition Additive Manufacturing for Aluminum Alloy[J]. 金属学报, 2024, 60(11): 1584-1594.
[14] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[15] ZHENG Liang, ZHANG Qiang, LI Zhou, ZHANG Guoqing. Effects of Oxygen Increasing/Decreasing Processes on Surface Characteristics of Superalloy Powders and Properties of Their Bulk Alloy Counterparts: Powders Storage and Degassing[J]. 金属学报, 2023, 59(9): 1265-1278.
No Suggested Reading articles found!