Please wait a minute...
Acta Metall Sin  2024, Vol. 60 Issue (9): 1179-1188    DOI: 10.11900/0412.1961.2022.00427
Research paper Current Issue | Archive | Adv Search |
Effects of Cu Content on the Microstructure and Tensile Property of K4061 Alloy
CAO Shuting1,2, ZHAO Jian3, GONG Tongzhao1, ZHANG Shaohua1(), ZHANG Jian1
1.Shi -changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2.School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
3.Xi'an Aerospace Propulsion Institute, Xi'an 710100, China
Cite this article: 

CAO Shuting, ZHAO Jian, GONG Tongzhao, ZHANG Shaohua, ZHANG Jian. Effects of Cu Content on the Microstructure and Tensile Property of K4061 Alloy. Acta Metall Sin, 2024, 60(9): 1179-1188.

Download:  HTML  PDF(3853KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The LOX (liquid oxygen)/kerosene rocket engine is widely used in heavy launch vehicles owing to its low cost, high performance, and high reliability. However, the next-generation LOX/kerosene rocket engine requires a new superalloy that can resist oxygen-rich combustion. The K4061 alloy is a second-generation superalloy that has better resistance to oxygen-rich combustion compared to the first-generation superalloy due to the addition of the Cu element in its composition. However, there is limited research on the role of the Cu element in the superalloy. This study investigates the effect of Cu content (mass fraction) ranging from 1% to 10% on the microstructure and Cu distribution of K4061 alloy using thermodynamic calculations along with DSC, SEM, and TEM experiments. The results show that during the equilibrium solidification of K4061 alloy, the γ matrix precipitates first, followed by precipitating MC carbides at the end of solidification. The addition of Cu does not affect the equilibrium solidification path of the alloy; however, it lowers the solidus and liquidus temperatures of the alloy and the precipitation temperature of MC. During the nonequilibrium solidification, the δ phase is also precipitated at the late solidification stage. The types of precipitated phases of K4061 alloy with different Cu contents remain unchanged, consistent with thermodynamic calculations. However, Cu-rich phases are not found in the sample, and Cu does not dissolve in MC in large quantities or segregate into grain boundaries. TEM results show that Cu is enriched in the strengthening phases, and the size of the strengthening phases slightly increases with the addition of Cu during aging heat treatment. Additionally, the addition of Cu reduced the room temperature and 750°C tensile strength of the alloy.

Key words:  Ni-base superalloy      solidification      precipitation      Cu      tensile property     
Received:  31 August 2022     
ZTFLH:  TG146.1  
Fund: National Natural Science Foundation of China(52150233,52203301);Key Research Program of the Chinese Academy of Sciences(ZDRW-CN-2021-2-1)
Corresponding Authors:  ZHANG Shaohua, associate professor, Tel: (024)23748882, E-mail: zhangshaohua@imr.ac.cn

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2022.00427     OR     https://www.ams.org.cn/EN/Y2024/V60/I9/1179

SampleCAlTiVCrFeCuNbMoNi
K40610.040.90.60.4516.5140.554.754Bal.
K4061-2Cu0.040.90.60.4516.51224.754Bal.
K4061-5Cu0.040.90.60.4516.5954.754Bal.
K4061-8Cu0.040.90.60.4516.5684.754Bal.
K4061-10Cu0.040.90.60.4516.54104.754Bal.
Table 1  Nominal compositions of K4061 alloy
Fig.1  Calculated solidification sequences of K4061 alloy with different Cu contents predicted by Thermo-Calc
(a)K4061 (b)K4061-1Cu (c)K4061-2Cu (d)K4061-5Cu (e)K4061-8Cu (f)K4061-10Cu
Fig.2  Variations of solidification characteristic temperature with Cu content in K4061 alloy by Thermo-Calc
Fig.3  Heating (a) and cooling (b) DSC curves of K4061 alloy with different Cu contents
Fig.4  Variations of solidification characteristic temperature with Cu content measuring by DSC
Fig.5  SEM images of as-cast K4061 (a), K4061-2Cu (b), K4061-5Cu (c), K4061-8Cu (d), and K4061-10Cu (e) alloys
Fig.6  SEM images of K4061 (a), K4061-2Cu (b), K4061-5Cu (c), K4061-8Cu (d), and K4061-10Cu (e) alloys after heat treatment
Fig.7  SEM images of γ'/γ" phases in K4061 (a), K4061-2Cu (b), K4061-5Cu (c), K4061-8Cu (d), and K4061-10Cu (e) alloys after heat treatment
Fig.8  SEM images and corresponding EDS element maps of as-cast K4061-8Cu (a) and K4061-10Cu (b) alloys
Fig.9  TEM high-angle annular dark field (HAADF) image and corresponding element maps of the grain boundary in the K4061-10Cu alloy after heat treatment
Fig.10  TEM-HAADF image and corresponding element maps of the K4061-10Cu alloy after heat treatment
SampleCTiCrCuNbMo
K406147.364.890.240.0046.740.75
K4061-2Cu47.254.750.230.0047.150.60
K4061-5Cu47.084.800.230.0047.270.60
K4061-8Cu47.314.520.230.0047.370.55
K4061-10Cu47.084.130.230.0048.040.50
Table 2  Element contents of MC calculated by Thermo-Calc software
Fig.11  TEM image and EDS line scanning results of the K4061-10Cu alloy after heat treatment
SampleRmRp0.2ZA
RT750oCRT750oCRT750oCRT750oC
K40619404976744585712274
K4061-2Cu8994976644673617265
K4061-5Cu8804526334183612287
Table 3  RT and 750oC tensile properties of as-cast K4061 alloy with different Cu contents after heat treatment
Fig.12  Gibbs energies of γ' (a) and γ" (b) phases in K4061 alloy with different Cu contents
Fig.13  Influences of Cu content on the critical nucleation sizes of γ' and γ" phases
1 Kudrin A A, Zuev D S, Ponomareva L L, et al. Influence of microalloying on the plasticity of KhN58MBYuD-VI nickel alloy [J]. Steel Transl., 2008, 38: 252
2 Nedashkovskii K I, Zheleznyak O N, Gromyko B M, et al. Effect of low temperatures on mechanical and physical properties of high-strength nickel alloy ÉK61-ID and stainless maraging steel Ek49-VD [J]. Met. Sci. Heat Treat., 2003, 45: 233
3 Polyanskii A M, Polyanskii V M. Structural changes in alloy ÉK-61 due to cyclic deformation at elevated temperature [J]. Met. Sci. Heat Treat., 2010, 52: 279
4 Sorokina N A, Gal'tsova V I. High-temperature ductility of nickel alloys type KhN55MBYu with a high iron content [J]. Met. Sci. Heat Treat., 1994, 36: 476
5 Huang J, Xu G H, Qin H Y, et al. Correlation between fracture morphology and microstructural evolution during long-term aging of EK61 superalloy [J]. Scanning, 2020, 2020: 1087024
6 Mignanelli P M, Jones N G, Pickering E J, et al. Gamma-gamma prime-gamma double prime dual-superlattice superalloys [J]. Scr. Mater., 2017, 136: 136
7 Alam T, Chaturvedi M, Ringer S P, et al. Precipitation and clustering in the early stages of ageing in Inconel 718 [J]. Mater. Sci. Eng., 2010, A527: 7770
8 Slama C, Abdellaoui M. Structural characterization of the aged Inconel 718 [J]. J. Alloys Compd., 2000, 306: 277
9 Semenov V N, Akimov N V, Glushko V P. Formation of cracks in ÉP202 and ÉK61 alloys in welding of structures of liquid rocket engines [J]. Weld. Int., 2013, 27: 159
10 Monroe R W, Bates C E, Pears C D. Metal combustion in high-pressure flowing oxygen [A]. The Symposium on Flammability and Sensitivity of Materials in Oxygen-Enriched Atmospheres [C]. West Conshohocken: ASTM, 1983: 126
11 Holt R T, Wallace W. Impurities and trace elements in nickel-base superalloys [J]. Int. Met. Rev., 1976, 21: 1
12 Davis S E. An elementary overview of the selection of materials for service in oxygen-enriched environments [A]. The Symposium on Flammability and Sensitivity of Materials in Oxygen-Enriched Atmospheres: 13th Volume [C]. West Conshohocken: ASTM, 2012: 1
13 Li Y M, Hu W, Chen Y. Effect of copper on solidification process and segregation in K4169 superalloy [J]. Spec. Cast. Nonferrous Alloys, 2013, 33: 895
李亚敏, 胡 伟, 陈 毅. Cu对K4169合金凝固过程及凝固偏析的影响 [J]. 特种铸造及有色合金, 2013, 33: 895
14 Li Y M, Zhang Y Y, Zhao W, et al. First-principles study on the effect of Cu on Nb segregation in Inconel 718 alloy [J]. Acta Metall. Sin., 2022, 58: 241
doi: 10.11900/0412.1961.2020.00495
李亚敏, 张瑶瑶, 赵 旺 等. Cu对Inconel 718合金Nb偏析影响机理的第一性原理研究 [J]. 金属学报, 2022, 58: 241
doi: 10.11900/0412.1961.2020.00495
15 Gwalani B, Choudhuri D, Soni V, et al. Cu assisted stabilization and nucleation of L12 precipitates in Al0.3CuFeCrNi2 fcc-based high entropy alloy [J]. Acta Mater., 2017, 129: 170
16 Detrois M, Pei Z R, Rozman K A, et al. Partitioning of tramp elements Cu and Si in a Ni-based superalloy and their effect on creep properties [J]. Materialia, 2020, 13: 100843
17 He Y W. Study on the effect and mechanism of V, Cu in a new Ni-Cr-Fe-Nb superalloy [D]. Shenyang: Northeastern University, 2016
贺玉伟. V、Cu在新型Ni-Cr-Fe-Nb高温合金中的作用机理研究 [D]. 沈阳: 东北大学, 2016
18 Pan J S, Tong J M, Tian M B. Fundamentals of Materials Science [M]. Beijing: Tsinghua University Press, 2011: 96
潘金生, 仝健民, 田民波. 材料科学基础 [M]. 北京: 清华大学出版社, 2011: 96
19 Oblak J M, Paulonis D F, Duvall D S. Coherency strengthening in Ni base alloys hardened by DO22 γ'' precipitates [J]. Metall. Trans., 1974, 5: 143
20 Han D W, Yu L X, Liu F, et al. Effect of heat treatment on the microstructure and mechanical properties of the modified 718 alloy [J]. Acta Metall. Sin. (Engl. Lett.), 2018, 31: 1224
21 Goodfellow A J. Strengthening mechanisms in polycrystalline nickel-based superalloys [J]. Mater. Sci. Technol., 2018, 34: 1793
22 Roth H A, Davis C L, Thomson R C. Modeling solid solution strengthening in nickel alloys [J]. Metall. Mater. Trans., 1997, 28A: 1329
[1] WANG Jingjing, YAO Zhihao, ZHANG Peng, ZHAO Jie, ZHANG Mai, WANG Lei, DONG Jianxin, CHEN Ying. Effect of Element S on Interfacial Stability of Matrix and Thermal Barrier Coating in Nickle-Based Superalloys[J]. 金属学报, 2024, 60(9): 1250-1264.
[2] LIU Guanghui, WANG Weiguo, Rohrer Gregory S, CHEN Song, LIN Yan, TONG Fang, FENG Xiaozheng, ZHOU Bangxin. {111}/{111} Near Singular Boundaries in a Dynamically Recrystallized Al-Zn-Mg-Cu Alloy Compressed at Elevated Temperature[J]. 金属学报, 2024, 60(9): 1165-1178.
[3] GONG Weijia, LIANG Senmao, ZHANG Jingyi, LI Shilei, SUN Yong, LI Zhongkui, LI Jinshan. Effect of Cooling Rate on Hydride Precipitation in Zirconium Alloys[J]. 金属学报, 2024, 60(9): 1155-1164.
[4] WANG Lin, WEI Chen, WANG Lei, WANG Jun, LI Jinshan. Simulation of Core-Shell Structure Evolution of Cu-Co Immiscible Alloys[J]. 金属学报, 2024, 60(9): 1239-1249.
[5] LI Yawei, XIE Guang, KE Yubin, LU Yuzhang, HUANG Yaqi, ZHANG Jian. In Situ Small-Angle Neutron Scattering Study of Precipitation and Evolution Behavior of Secondary Phases in Ni-Based Superalloys[J]. 金属学报, 2024, 60(8): 1100-1108.
[6] ZHANG Ran, ZHU Shize, LIU Zhenyu, KE Yubin, WANG Dong, XIAO Bolv, MA Zongyi. Influence of Aging Temperatures on Precipitation Behaviors of SiC/Al-Zn-Mg-Cu Composites[J]. 金属学报, 2024, 60(8): 1043-1054.
[7] CHEN Cheng, YANG Guangyu, JIN Menghui, WANG Qiang, TANG Xin, CHENG Huimin, JIE Wanqi. Effect of the Mold Positive and Negative Rotation on the Microstructure and Room-Temperature Mechanical Properties of K4169 Superalloy[J]. 金属学报, 2024, 60(7): 926-936.
[8] GAO Xinliang, BA Wenyue, ZHANG Zheng, XI Shiping, XU Dong, YANG Zhinan, ZHANG Fucheng. Model and Analysis of Solute Microsegregation in Bainite Rail Steel During Continuous Casting Process[J]. 金属学报, 2024, 60(7): 990-1000.
[9] ZHU Shaoxiang, WANG Qingjiang, LIU Jianrong, CHEN Zhiyong. Macrosegregation of Zr and Mo in TC19 Titanium Alloy Ingot[J]. 金属学报, 2024, 60(7): 869-880.
[10] ZHOU Yanyu, LI Jiangxu, LIU Chen, LAI Junwen, GAO Qiang, MA Hui, SUN Yan, CHEN Xingqiu. First-Principles Study of Projected Berry Phase and Hydrogen Evolution Catalysis in Pt7Sb[J]. 金属学报, 2024, 60(6): 837-847.
[11] BAI Zhiwen, DING Zhigang, ZHOU Ailong, HOU Huaiyu, LIU Wei, LIU Feng. Molecular Dynamics Simulation of Thermo-Kinetics of Tensile Deformation of α-Fe Single Crystal[J]. 金属学报, 2024, 60(6): 848-856.
[12] MENG Zikai, MENG Zhichao, GAO Changyuan, GUO Hui, CHEN Hansen, CHEN Liutao, XU Dongsheng, YANG Rui. Molecular Dynamics Simulation of Creep Mechanism in Nanocrystalline α-Zirconium Under Various Conditions[J]. 金属学报, 2024, 60(5): 699-712.
[13] LI Zhenjie, CAI Guixi, ZHANG Bo, LI Jingming, LI Jiankui. Synthetic Aperture Imaging Technology for Ultrasonic Spiral Scanning Detection of Metal Bars[J]. 金属学报, 2024, 60(4): 559-568.
[14] FAN Lihua, LI Jinlin, SUN Jiudong, LV Mengtian, WANG Qing, DONG Chuang. Effect of Cr/Mo/W on the Thermal Stability ofγ/γ′Coherent Microstructure in Ni-Based Superalloys[J]. 金属学报, 2024, 60(4): 453-463.
[15] CHENG Kun, CHEN Shuming, CAO Shuo, LIU Jianrong, MA Yingjie, FAN Qunbo, CHENG Xingwang, YANG Rui, HU Qingmiao. Precipitation Strengthening in Titanium Alloys from First Principles Investigation[J]. 金属学报, 2024, 60(4): 537-547.
No Suggested Reading articles found!