Please wait a minute...
Acta Metall Sin  2025, Vol. 61 Issue (1): 88-98    DOI: 10.11900/0412.1961.2024.00201
Research paper Current Issue | Archive | Adv Search |
Microstructure, Mechanical Properties, and High-Temperature Oxidation Behaviors of the CrNbTiVAl x Refractory High-Entropy Alloys
ZHU Man(), ZHANG Cheng, XU Junfeng, JIAN Zengyun, XI Zengzhe
School of Materials Science and Chemical Engineering, Xi'an Technological University, Xi'an 710021, China
Cite this article: 

ZHU Man, ZHANG Cheng, XU Junfeng, JIAN Zengyun, XI Zengzhe. Microstructure, Mechanical Properties, and High-Temperature Oxidation Behaviors of the CrNbTiVAl x Refractory High-Entropy Alloys. Acta Metall Sin, 2025, 61(1): 88-98.

Download:  HTML  PDF(3641KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Owing to their high thermal stability, good high-temperature mechanical properties, and excellent high-temperature oxidation resistance, refractory high-entropy alloys (RHEAs) are strong candidates for structural materials in high-temperature applications. To reduce the density and improve the high-temperature oxidation resistance of RHEAs, in this study, the Al element was added into CrNbTiV alloys, forming a series of CrNbTiVAl x RHEAs (x = 0.25, 0.5, 0.75, 1.0). The effects of Al content on the microstructure, mechanical properties, and high-temperature oxidation behaviors of the CrNbTiV RHEAs were studied using XRD, SEM, EDS, and an electronic universal testing machine. A mixture of bcc, Laves, and α-Ti phases was found in the CrNbTiVAl x RHEAs and equiaxed grains were observed in the bcc phase. Increasing the Al content decreased the density of the alloys and reduced the yield strength from 2037 to 1371 MPa. The specific yield strength ranged from 215.93 MPa·cm3/g in CrNbTiVAl0.75 to 323.33 MPa·cm3/g in CrNbTiVAl0.25. After oxidation at 900 oC, the CrNbTiVAl x RHEAs exhibited parabolic oxidation kinetics and their high-temperature oxidation resistance was improved due to increased Al content. The oxidized products were determined as Al2O3, (CrNbTiVAl)O2, and VO x. The surfaces of the alloys with low Al content formed a continuous and compact complex oxide (CrNbTiVAl)O2 that effectively prevented the diffusion of O2 into the substrate. Increasing the Al content decreased the amount of complex oxide (CrNbTiVAl)O2, forming denser, continuous, and finer Al2O3 oxides on the surface that appreciably improved the high-temperature oxidation resistance.

Key words:  refractory high-entropy alloy      microstructure      mechanical property      high-temperature oxidation resistance     
Received:  18 June 2024     
ZTFLH:  TG113  
Fund: National Natural Science Foundation of China(51971166);National Natural Science Foundation of China(51904218)
Corresponding Authors:  ZHU Man, professor, Tel: (029)86173324, E-mail: zhuman0428@126.com

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2024.00201     OR     https://www.ams.org.cn/EN/Y2025/V61/I1/88

Fig.1  XRD spectra (a) and enlarged view of the primary diffraction peak (b) of the CrNbTiVAl x (x = 0.25, 0.5, 0.75, and 1.0, molar ratio) refractory high-entropy alloys (RHEAs)
Fig.2  Backscattered electron (BSE) images of microstructures of the CrNbTiVAl x RHEAs
(a) Al0.25 (b) Al0.5 (c) Al0.75 (d) Al1.0
AlloyRegionCrNbTiVAl
Al0.25Nominal23.5323.5323.5323.535.88
bcc27.3227.2410.5529.005.89
Laves30.9725.1911.3325.966.54
α-Ti00.2305.4090.2903.960.12
Al0.50Nominal22.2222.2222.2222.2211.12
bcc33.2922.5816.1418.7609.23
Laves33.4123.6414.5019.6208.84
α-Ti00.4504.6790.9603.4800.13
Al0.75Nominal21.0521.0521.0521.0515.80
bcc21.2222.9917.4023.4814.91
Laves30.4420.2816.6522.0210.62
α-Ti00.4505.3989.3004.5300.34
Al1.0Nominal2020202020
bcc20.5219.6219.8420.0819.06
Laves31.2718.3317.6320.3812.39
α-Ti00.1103.4693.1003.0400.29
Table 1  EDS results in different regions of the CrNbTiVAl x RHEAs
Fig.3  Compressive stress-strain curves of the CrNbTiVAl x RHEAs tested at room temperature
Alloy

σ0.2

MPa

σf

MPa

εf

%

ρ

g·cm-3

SYS

MPa·cm3·g-1

Al0.252037213112.356.30323.33
Al0.51917201214.506.09314.78
Al0.751274131406.165.90215.93
Al1.01371139806.655.73239.27
Table 2  Compressive property, density, and specific yield strength of the CrNbTiVAl x RHEAs
Fig.4  Comparison plots of SYS vs ρ for present CrNbTiVAl x RHEAs and other HEAs reported in the literatures [12,16,17,20,29-32]
Fig.5  Oxidation kinetic curves of the CrNbTiVAl x RHEAs oxidized at 900 oC
(a) mass gain per unit area (Δm / S) as a function of time (t)
(b) variation of (Δm / S)2vst
Alloyt / hkp1 / (mg2·cm-4·s-1)R2t / hkp2 / (mg2·cm-4·s-1)R2
Al0.250-401.98 × 10-10.9440-1002.90 × 10-20.97
Al0.50-401.43 × 10-10.9640-1005.31 × 10-20.97
Al0.750-408.81 × 10-20.9340-1007.23 × 10-20.98
Al1.00-405.71 ×10-20.9440-1008.91 × 10-20.99
Table 3  Parabolic rate constants (kp1, kp2) of the CrNbTiVAl x RHEAs after oxidation at 900 oC
Fig.6  XRD spectra of the CrNbTiVAl x RHEAs after oxidation at 900 oC for 10 h (a) and 100 h (b)
Fig.7  Low (a-d) and high (e-h) magnified surface morphologies of the CrNbTiVAl x RHEAs after oxidation at 900 oC for 100 h
(a, e) Al0.25 (b, f) Al0.5 (c, g) Al0.75 (d, h) Al1.0
AlloySpotIdentified phaseCrNbTiVAlO
Al0.251(CrNbTiVAl)O210.0511.3710.1304.3802.2861.79
2VO x03.6103.0904.7116.3801.2770.94
3Al2O304.0500.5800.3701.2533.6160.14
Al0.54(CrNbTiVAl)O209.159.6011.3503.6403.1263.14
5Al2O304.350.0600.4300.2334.9859.95
Al0.756VO x03.352.8704.0815.5001.3972.81
7(CrNbTiVAl)O207.338.9409.8403.1604.5366.20
8Al2O303.390.6100.9501.8536.0257.18
Al1.09(CrNbTiVAl)O215.1115.2216.9603.4502.6346.63
10Al2O303.6500.0000.0700.6233.3162.35
Table 4  EDS results in different regions in Fig.7 of the CrNbTiVAl x RHEAs after oxidation at 900 oC for 100 h
Fig.8  Cross-sectional morphologies and EDS mapping results of CrNbTiVAl x RHEAs after oxidation at 900 oC for 10 h
(a) Al0.25 (b) Al0.5 (c) Al0.75 (d) Al1.0
AlloyΔHmix / (kJ·mol-1)ΔSmix / (J·K-1·mol-1)Ωδ / %VECΔχA / %
Al0.250-7.8612.713.525.944.887.16
Al0.5-10.6713.152.605.814.777.13
Al0.75-12.8513.332.125.694.697.08
Al1.0-14.5613.381.835.574.607.03
Table 5  Calculated thermodynamic parameters in the CrNbTiVAl x RHEAs
Fig.9  Standard Gibbs free energy (ΔGθ) vs temperature (T) curves of oxides in the CrNbTiVAl x alloys
Fig.10  Schematics showing the oxidation mechanism of CrNbTiVAl x RHEAs at high temperatures
(a) pre-oxidation (b) early stages of oxidation(c) mid-oxidation(d) post-oxidation
1 Yeh J W, Chen S K, Lin S J, et al. Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes[J]. Adv. Eng. Mater., 2004, 6: 299
2 Lu Y P, Dong Y, Guo S, et al. A promising new class of high-temperature alloys: Eutectic high-entropy alloys[J]. Sci. Rep., 2014, 4: 6200
doi: 10.1038/srep06200 pmid: 25160691
3 Miracle D B, Senkov O N. A critical review of high entropy alloys and related concepts[J]. Acta Mater., 2017, 122: 448
4 Maresca F, Curtin W A. Mechanistic origin of high strength in refractory BCC high entropy alloys up to 1900 K[J]. Acta Mater., 2020, 182: 235
5 Lu Y P, Dong Y, Jiang H, et al. Promising properties and future trend of eutectic high entropy alloys[J]. Scr. Mater., 2020, 187: 202
6 Miao J W, Wang M L, Zhang A J, et al. Tribological properties and wear mechanism of AlCr1.3TiNi2 Eutectic high-entropy alloy at elevated temperature[J]. Acta Metall. Sin., 2023, 59: 267
苗军伟, 王明亮, 张爱军 等. AlCr1.3TiNi2共晶高熵合金的高温摩擦学性能及磨损机理[J]. 金属学报, 2023, 59: 267
doi: 10.11900/0412.1961.2021.00589
7 Zhang Y, Zuo T T, Tang Z, et al. Microstructures and properties of high-entropy alloys[J]. Prog. Mater. Sci., 2014, 61: 1
8 Liu N, Ding W, Wang X J, et al. Microstructure evolution and phase formation of Fe25Ni25Co x Mo y multi-principal-component alloys[J]. Metall. Mater. Trans., 2020, 51A: 2990
9 Jia Y H, Wang Z J, Wu Q F, et al. Boron microalloying for high-temperature eutectic high-entropy alloys[J]. Acta Mater., 2024, 262: 119427
10 Pei X H, Du Y, Wang H M, et al. Investigation of high temperature tribological performance of TiZrV0.5Nb0.5 refractory high-entropy alloy optimized by Si microalloying[J]. Tribol. Int., 2022, 176: 107885
11 Senkov O N, Wilks G B, Miracle D B, et al. Refractory high-entropy alloys[J]. Intermetallics, 2010, 18: 1758
12 Senkov O N, Wilks G B, Scott J M, et al. Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 refractory high entropy alloys[J]. Intermetallics, 2011, 19: 698
13 Xu C R, Fang L Y, Xu G L, et al. Mechanical properties and oxidation behavior of NbMoTaW x refractory high entropy alloys[J]. J. Alloys Compd., 2024, 990: 174390
14 Senkov O N, Senkova S V, Woodward C, et al. Low-density, refractory multi-principal element alloys of the Cr-Nb-Ti-V-Zr system: Microstructure and phase analysis[J]. Acta Mater., 2013, 61: 1545
15 Senkov O N, Miracle D B, Chaput K J, et al. Development and exploration of refractory high entropy alloys—A review[J]. J. Mater. Res., 2018, 33: 3092
16 Stepanov N D, Yurchenko N Y, Skibin D V, et al. Structure and mechanical properties of the AlCr x NbTiV (x = 0, 0.5, 1, 1.5) high entropy alloys[J]. J. Alloys Compd., 2015, 652: 266
17 Senkov O N, Senkova S V, Miracle D B, et al. Mechanical properties of low-density, refractory multi-principal element alloys of the Cr-Nb-Ti-V-Zr system[J]. Mater. Sci. Eng., 2013, A565: 51
18 Butler T M, Chaput K J, Dietrich J R, et al. High temperature oxidation behaviors of equimolar NbTiZrV and NbTiZrCr refractory complex concentrated alloys (RCCAs)[J]. J. Alloys Compd., 2017, 729: 1004
19 Yurchenko NY, Stepanov N D, Zherebtsov S V, et al. Structure and mechanical properties of B2 ordered refractory AlNbTiVZr x (x = 0-1.5) high-entropy alloys[J]. Mater. Sci. Eng., 2017, A704: 82
20 Zhu M, Yao L J, Liu Y Q, et al. Microstructure evolution and mechanical properties of a novel CrNbTiZrAl x (0.25 ≤ x ≤ 1.25) eutectic refractory high-entropy alloy[J]. Mater. Lett., 2020, 272: 127869
21 Qiao D X, Liang H, Wu S Y, et al. The mechanical and oxidation properties of novel B2-ordered Ti2ZrHf0.5VNb0.5Al x refractory high-entropy alloys[J]. Mater. Charact., 2021, 178: 111287
22 Dong Z Q, Sun A K, Yang S, et al. Machine learning-assisted discovery of Cr, Al-containing high-entropy alloys for high oxidation resistance[J]. Corros. Sci., 2023, 220: 111222
23 Anber E A, Beaudry D, Brandenburg C, et al. Oxidation resistance of Al-containing refractory high-entropy alloys[J]. Scr. Mater., 2024, 244: 115997
24 Lu S D, Li X X, Liang X Y, et al. Effect of Al content on the oxidation behavior of refractory high-entropy alloy AlMo0.5NbTa0.5TiZr at elevated temperatures[J]. Int. J. Refract. Met. Hard Mater., 2022, 105: 105812
25 Zhang Y Y, Wu H B, Yu X P, et al. Role of Cr in the high-temperature oxidation behavior of Cr x MnFeNi high-entropy alloys at 800 oC in air[J]. Corros. Sci., 2022, 200: 110211
26 Li Z, Wang L, Wang B B, et al. Oxidation behavior of Ti-Nb-Mo-Al-Si x refractory high entropy alloy at 1000 oC[J]. Corros. Sci., 2022, 206: 110504
27 Guo Y L, Peng J, Peng S Y, et al. Improving oxidation resistance of TaMoZrTiAl refractory high entropy alloys via Nb and Si alloying[J]. Corros. Sci., 2023, 223: 111455
28 Chang C H, Titus M S, Yeh J W. Oxidation behavior between 700 and 1300 oC of refractory TiZrNbHfTa high-entropy alloys containing aluminum[J]. Adv. Eng. Mater., 2018, 20: 1700948
29 Stepanov N D, Yurchenko N Y, Shaysultanov D G, et al. Effect of Al on structure and mechanical properties of Al x NbTiVZr (x = 0, 0.5, 1, 1.5) high entropy alloys[J]. Mater. Sci. Technol., 2015, 31: 1184
30 Liu X W, Bai Z C, Ding X F, et al. A novel light-weight refractory high-entropy alloy with high specific strength and intrinsic deformability[J]. Mater. Lett., 2021, 287: 129255
31 Jiang W T, Wang X H, Li S Y, et al. A lightweight Al0.8Nb0.5Ti2V2Zr0.5 refractory high entropy alloy with high specific yield strength[J]. Mater. Lett., 2022, 328: 133144
32 Senkov O N, Senkova S V, Woodward C. Effect of aluminum on the microstructure and properties of two refractory high-entropy alloys[J]. Acta Mater., 2014, 68: 214
33 Wagner C. Beitrag zur theorie des anlaufvorgangs[J]. Z. Phys. Chem., 1933, 21B: 25
34 Liu C M, Wang H M, Zhang S Q, et al. Microstructure and oxidation behavior of new refractory high entropy alloys[J]. J. Alloys Compd., 2014, 583: 162
35 Guo S, Ng C, Lu J, et al. Effect of valence electron concentration on stability of fcc or bcc phase in high entropy alloys[J]. J. Appl. Phys., 2011, 109: 103505
36 Yurchenko N, Stepanov N, Salishchev G. Laves-phase formation criterion for high-entropy alloys[J]. Mater. Sci. Technol., 2017, 33: 17
[1] ZHAO Yanan, GUO Qianying, LIU Chenxi, MA Zongqing, LIU Yongchang. Effects of Subsequent Heat Treatment on Microstructure and High-Temperature Mechanical Properties of Laser 3D Printed GH4099 Alloy[J]. 金属学报, 2025, 61(1): 165-176.
[2] ZHANG Shengyu, MA Qingshuang, YU Liming, ZHANG Jingwen, LI Huijun, GAO Qiuzhi. Effect of Pre-Aging on Microstructure and Properties of Cold-Rolled Alumina-Forming Austenitic Steel[J]. 金属学报, 2025, 61(1): 177-190.
[3] WANG Yeqing, FU Ke, ZHAO Yongzhu, SU Liji, CHEN Zheng. Non-Equilibrium Solidification Behavior and Microstructure Evolution of Undercooled Fe7(CoNiMn)80B13 Eutectic High-Entropy Alloy[J]. 金属学报, 2025, 61(1): 143-153.
[4] WAN Jie, LI Haotian, LIU Shuji, LU Hongzhou, WANG Lisheng, ZHANG Zhendong, LIU Chunhai, JIA Jianlei, LIU Haifeng, CHEN Yuzeng. Homogenization of Nuclei in Al-Nb-B Inoculant and Its Effect on Microstructure and Mechanical Properties of Cast Al Alloy[J]. 金属学报, 2025, 61(1): 117-128.
[5] HAN Ying, WU Yuhang, ZHAO Chunlu, ZHANG Jingshi, LI Zhenmin, RAN Xu. High-Temperature Creep Behavior of Selective Laser Melting Manufactured Al-Si-Fe-Mn-Ni Alloy[J]. 金属学报, 2025, 61(1): 154-164.
[6] YU Dong, MA Weilong, WANG Yali, WANG Jincheng. Phase Field Modeling of Microstructure Evolution During Solidification and Subsequent Solid-State Phase Transformation of Au-Pt Alloys[J]. 金属学报, 2025, 61(1): 109-116.
[7] WANG Zhijun, BAI Xiaoyu, WANG Jianbin, JIANG Hui, JIAO Wenna, LI Tianxin, LU Yiping. Revisiting the Development of Eutectic High-Entropy Alloys over the Past Decade (2014-2024): Design, Manufacturing, and Applications[J]. 金属学报, 2025, 61(1): 1-11.
[8] XIA Xingchuan, ZHANG Enkuan, DING Jian, WANG Yujiang, LIU Yongchang. Research Progress on Laser Cladding of Refractory High-Entropy Alloy Coatings[J]. 金属学报, 2025, 61(1): 59-76.
[9] LI Junjie, LI Panyue, HUANG Liqing, GUO Jie, WU Jingyang, FAN Kai, WANG Jincheng. Progress in Multiscale Simulation of Solidification Behavior in Vacuum Arc Remelted Ingot[J]. 金属学报, 2025, 61(1): 12-28.
[10] ZHANG Qiankun, HU Xiaofeng, JIANG Haichang, RONG Lijian. Effect of Si on Microstructure and Mechanical Properties of a 9Cr Ferritic/Martensitic Steel[J]. 金属学报, 2024, 60(9): 1200-1212.
[11] WANG Lin, WEI Chen, WANG Lei, WANG Jun, LI Jinshan. Simulation of Core-Shell Structure Evolution of Cu-Co Immiscible Alloys[J]. 金属学报, 2024, 60(9): 1239-1249.
[12] GONG Weijia, LIANG Senmao, ZHANG Jingyi, LI Shilei, SUN Yong, LI Zhongkui, LI Jinshan. Effect of Cooling Rate on Hydride Precipitation in Zirconium Alloys[J]. 金属学报, 2024, 60(9): 1155-1164.
[13] ZHOU Mu, WANG Qian, WANG Yanxu, ZHAI Zirong, HE Lunhua, LI Bing, MA Yingjie, LEI Jiafeng, YANG Rui. Effect of Prewelding Pretreatment on Welding Residual Stress of Titanium Alloy Thick Plate[J]. 金属学报, 2024, 60(8): 1064-1078.
[14] WANG Lijia, HU Li, MIAO Tianhu, ZHOU Tao, HE Qubo, LIU Xiangguo. Effect of Pre-Deformation on Mechanical Behavior and Microstructure Evolution of AZ31 Mg Alloy Sheet with Bimodal Non-Basal Texture at Room Temperature[J]. 金属学报, 2024, 60(7): 881-889.
[15] MENG Yujia, XI Tong, YANG Chunguang, ZHAO Jinlong, ZHANG Xinrui, YU Yingjie, YANG Ke. Effect of Gallium Addition on Mechanical and Antibacterial Properties of 304L Stainless Steel[J]. 金属学报, 2024, 60(7): 890-900.
No Suggested Reading articles found!