Please wait a minute...
Acta Metall Sin  2023, Vol. 59 Issue (9): 1253-1264    DOI: 10.11900/0412.1961.2023.00141
Research paper Current Issue | Archive | Adv Search |
Evolution of Microstructures and Mechanical Properties of K439B Superalloy During Long-Term Aging at 800oC
ZHANG Leilei1,2, CHEN Jingyang2(), TANG Xin2, XIAO Chengbo2, ZHANG Mingjun2, YANG Qing1()
1School of Materials Science and Engineering, Xi'an University of Technology, Xi'an 710048, China
2Science and Technology on Advanced High Temperature Structural Materials Laboratory, AECC Beijing Institute of Aeronautical Materials, Beijing 100095, China
Cite this article: 

ZHANG Leilei, CHEN Jingyang, TANG Xin, XIAO Chengbo, ZHANG Mingjun, YANG Qing. Evolution of Microstructures and Mechanical Properties of K439B Superalloy During Long-Term Aging at 800oC. Acta Metall Sin, 2023, 59(9): 1253-1264.

Download:  HTML  PDF(36811KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The K439B alloy is a novel equiaxed superalloy and is used for producing hot section components that need to resist high temperatures in aero engines and gas turbines as its temperature capacity exceeds 800oC. In this study, the evolution of the microstructure and mechanical properties of K439B equiaxed superalloy after being subjected to long-term aging at 800oC for 3000 h was examined. The predominant deformation mechanisms affecting room-temperature tensile and stress rupture properties at 815oC and under 379 MPa stress following different aging durations for the K439B alloy were investigated.Results indicate that for heat-treated alloy, the morphology of the γ' phase is spherical, MC carbide is generated in the interdendritic region and grain boundaries, while M23C6 carbide is in the grain boundaries. During long-term aging at 800oC, γ′ precipitates conform to the Ostwald ripening mechanism for growth and tend to take a cubic form; the coarsening rate of the γ′ phase is calculated to be 71.7 nm3/h; Additionally, the MC carbide deteriorates while the content of M23C6 carbide gradually increases. After long-term aging for 3000 h, the precipitated grain boundary phase comprises MC carbide, γ′ phase, and M23C6 carbide; the orientation relationship between γ′ phase and M23C6 carbide can be described as [111] γ' //[111] M23C6 and (22¯0) γ′ //(22¯0) M23C6. The heat-treated alloy demonstrates room-temperature tensile and yield str-engths of 1159.0 MPa and 911.5 MPa, respectively. Meanwhile, the stress rupture life at 815oC and under 379 MPa stress is 150.4 h. As the size of γ′ precipitates increases, the dominant deformation mechanism shifts from dislocation slipping in the matrix to dislocation cutting through the γ′ phase after long-term aging, resulting in superior stacking faults appeared in the γ′ phase. Consequently, the room-temperature tensile strength and stress rupture life show reduction at 815oC and under 379 MPa stress.

Key words:  K439B      long-term aging      microstructure      mechanical property      deformation mechanism     
Received:  03 April 2023     
ZTFLH:  TG132.3  
Fund: National Science and Technology Major Project of China(J2019-VI-0004-0117);National Key Research and Development Program of China(2022YFB3706804);Science and Technology on Advanced High Temperature Structural Materials Laboratory Fund(6142903210104);Science and Technology on Advanced High Temperature Structural Materials Laboratory Fund(6142903220101);AECC Science and Technology Innovation Platform Project(CXPT-2018-006)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2023.00141     OR     https://www.ams.org.cn/EN/Y2023/V59/I9/1253

Fig.1  Low (a, c, e) and high (b, d, f) magnified OM images of microstructures of K439B alloy subjected to long-term aging at 800oC for 0 h (a, b), 1000 h (c, d), 3000 h (e, f) (GB—grain boundary)
Fig.2  Typical microstructures of γ′ precipitates in the dendrite core of K439B alloy subjected to long-term aging at 800oC for 0 h (a), 100 h (b), 500 h (c), 1000 h (d), 2000 h (e), and 3000 h (f)
Fig.3  Size distributions of γ′ precipitates in the dendrite core of K439B alloy subjected to long-term aging at 800oC for 0 h (a), 100 h (b), 500 h (c), 1000 h (d), 2000 h (e), and 3000 h (f)
AgingAverageVolumeFeret ratio
time / hsize / nmfraction / %
047.0 ± 1.922.9 ± 1.21.09 ± 0.03
10051.8 ± 1.423.4 ± 0.91.29 ± 0.02
50074.3 ± 2.323.7 ± 1.01.34 ± 0.01
100092.4 ± 2.523.1 ± 0.81.36 ± 0.01
2000112.6 ± 3.523.2 ± 1.61.39 ± 0.01
3000120.3 ± 2.224.5 ± 1.71.42 ± 0.01
Table 1  Size, volume fraction, and shape factor of γ′ precipitates in the dendrite core of K439B alloy subjected to long-term aging at 800oC
Fig.4  Relationship between size of γ′ precipitates in the dendrite core and aging time of K439B alloy at 800oC (r¯0—average radius of γ′ after aging for 0 h; r¯—average radius of γ′ after aging for time t; k—LSW theory coarsening rate constant; R2—coefficient of determination)
Fig.5  Evolution of carbide distributed in the interdendritic region (a, c, e) and at the grain boundary (b, d, f) of K439B alloy subjected to long-term aging at 800oC for 0 h (a, b), 1000 h (c, d), and 3000 h (e, f)
Fig.6  Carbide in the heat-treated K439B alloy
(a) MC carbide distributed in the interdendritic region
(b) HRTEM image from the edge of the MC carbide (marked with an arrow in Fig.6a) and the atomic-scale HRTEM images from the regions 1# and 2# with corresponding fast Fourier transform (FFT) patterns (insets)
(c, d) MC carbide (c) and M23C6 carbide (d) at the grain boundary with corresponding SAED patterns (insets)
Fig.7  Grain boundary precipitated phase, SAED patterns of regions 1#-3#, and EDS compositional mapping of K439B alloy subjected to long-term aging at 800oC for 3000 h
Aging timeInterdendritic regionGrain boundary
h%%
0-20.86
100-23.64
500-25.98
10002.3429.40
20006.5836.43
300010.1938.93
Table 2  Contents of M23C6 carbide in the interdendritic region and at grain boundary of K439B alloy subjected to long-term aging at 800oC
Fig.8  Room temperature tensile properties (a) and 815oC, 379 MPa stress rupture properties (b) of K439B alloy subjected to long-term aging at 800oC (σb—tensile strength, σp0.2—yield strength, δ—elongation, τ—stress rupture life )
Fig.9  Dislocation structures near room temperature tensile fracture surface of K439B alloy subjected to long-term aging at 800oC for 0 h (a, b), 1000 h (c, d), and 3000 h (e, f)
Fig.10  Dislocation structures near 815oC, 379 MPa stress rupture fracture surface of K439B alloy subjected to long-term aging at 800oC for 0 h (a-c) and 3000 h (d-f)
Fig.11  Schematics of microstructural evolution of K439B alloy during long-term aging at 800oC for 0 h (a), 1000 h (b), and 3000 h (c) (ID—interdendritic region)
1 Guo J T. Materials Science and Engineering for Superalloys [M]. Beijing: Science Press, 2008: 4
郭建亭. 高温合金材料学-上册-应用基础理论 [M]. 北京: 科学出版社, 2008: 4
2 Detrois M. Advancing development and application of superalloys [J]. JOM, 2020, 72: 1783
doi: 10.1007/s11837-020-04124-5
3 Schwant R, Shen C, Soare M. New materials enable unprecedented improvement in turbine performance [J]. Adv. Mater. Process., 2013, 171(1): 18
4 Sun B D, Wang J, Shu D. Precision Forming Technology of Large Superalloy Castings for Aircraft Engine [M]. Shanghai: Shanghai Jiao Tong University Press, 2016: 1
孙宝德, 王 俊, 疏 达. 航空发动机高温合金大型铸件精密成型技术 [M]. 上海: 上海交通大学出版社, 2016: 1
5 Perepezko J H. The hotter the engine, the better [J]. Science, 2009, 326: 1068
doi: 10.1126/science.1179327 pmid: 19965415
6 Anderson M, Thielin A L, Bridier F, et al. δ Phase precipitation in Inconel 718 and associated mechanical properties [J]. Mater. Sci. Eng., 2017, A679: 48
7 Anbarasan N, Gupta B K, Prakash S, et al. Effect of heat treatment on the microstructure and mechanical properties of Inconel 718 [J]. Mater. Today Proc., 2018, 5: 7716
8 Chen J Y, Ren X D, Zhang M J, et al. Microstructure and typical properties of cast Ni-based superalloy K439B [J]. Heat Treat. Met., 2023, 48(1): 100
doi: 10.13251/j.issn.0254-6051.2023.01.017
陈晶阳, 任晓冬 张明军 等. 铸造镍基高温合金K439B的组织及典型性能 [J]. 金属热处理, 2023, 48(1): 100
doi: 10.13251/j.issn.0254-6051.2023.01.017
9 Zhang P, Yuan Y, Yan J B, et al. Morphological evolution of γ' precipitates in superalloy M4706 during thermal aging [J]. Mater. Lett., 2018, 211: 107
doi: 10.1016/j.matlet.2017.09.096
10 Guo X T, Zheng W W, An W R, et al. High temperature creep behavior of a cast polycrystalline nickel-based superalloy K465 under thermal cycling conditions [J]. Materialia, 2020, 14: 100913
doi: 10.1016/j.mtla.2020.100913
11 Kang M D, Sridar S, Xiong W. Influence of long-term aging on microstructural stability and performance of DD6 superalloy [J]. Mater. Sci. Technol., 2021, 37: 607
doi: 10.1080/02670836.2021.1938837
12 Wu R H, Yin Q, Wang J P, et al. Effect of Re on mechanical properties of single crystal Ni-based superalloys: Insights from first-principle and molecular dynamics [J]. J. Alloys Compd., 2021, 862: 158643
doi: 10.1016/j.jallcom.2021.158643
13 Jahangiri M R, Abedini M. Effect of long time service exposure on microstructure and mechanical properties of gas turbine vanes made of IN939 alloy [J]. Mater. Des., 2014, 64: 588
doi: 10.1016/j.matdes.2014.08.035
14 Jahangiri M R, Arabi H, Boutorabi S M A, et al. Comparison of microstructural stability of IN939 superalloy with two different manufacturing routes during long-time aging [J]. Trans. Nonferrous Met. Soc. China, 2014, 24: 1717
doi: 10.1016/S1003-6326(14)63245-3
15 Ou M Q, Ma Y C, Hou K L, et al. Effect of grain boundary precipitates on the stress rupture properties of K4750 alloy after long-term aging at 750oC for 8000 h [J]. J. Mater. Sci. Technol., 2021, 92: 11
doi: 10.1016/j.jmst.2021.03.022
16 Ou M Q. Strengthening mechanism of K4750 alloy for the large skew plate bearing frame application [D]. Hefei: University of Science and Technology of China, 2018
欧美琼. 大型斜支板承力框架用K4750合金强化机制研究 [D]. 合肥: 中国科学技术大学, 2018
17 Liu G, Xiao X S, Véron M, et al. The nucleation and growth of η phase in nickel-based superalloy during long-term thermal exposure [J]. Acta Mater., 2020, 185: 493
doi: 10.1016/j.actamat.2019.12.038
18 Cui J Y, Zhang J T, Yao J. Effect of thermal exposure on the microstructure and stress-rupture properties of a directionally solidified superalloy [J]. J. Mater. Eng. Perform., 2021, 30: 9200
doi: 10.1007/s11665-021-06124-1
19 Chen J B, Huo Q Y, Chen J Y, et al. Tailoring the creep properties of second-generation Ni-based single crystal superalloys by composition optimization of Mo, W and Ti [J]. Mater. Sci. Eng., 2021, A799: 140163
20 Chen M K, Xie J, Shu D L, et al. Effect of long-term thermal exposures on tensile behaviors of K416B nickel-based superalloy [J]. Acta Metall. Sin. (Engl. Lett.), 2020, 33: 1699
doi: 10.1007/s40195-020-01075-3
21 Bao H S, Yang G, Chen Z Z, et al. Effects of long-term aging on microstructure and properties of a tungsten bearing heat-resistant alloy [J]. J. Iron Steel Res. Int., 2020, 27: 477
doi: 10.1007/s42243-020-00391-3
22 Lifshitz I M, Slyozov V V. The kinetics of precipitation from supersaturated solid solutions [J]. J. Phys. Chem. Solids, 1961, 19: 35
doi: 10.1016/0022-3697(61)90054-3
23 Pyczak F, Devrient B, Mughrabi H. The effects of different alloying elements on the thermal expansion coefficients, lattice constants and misfit of nickel-based superalloys investigated by X-ray diffraction [A]. Superalloys 2004 [C]. Warrendale, PA: TMS, 2004: 827
24 Baldan A. Review progress in Ostwald ripening theories and their applications to the γ'-precipitates in nickel-base superalloys Part II Nickel-base superalloys [J]. J. Mater. Sci., 2002, 37: 2379
doi: 10.1023/A:1015408116016
25 Thornton K, Akaiwa N, Voorhees P W. Large-scale simulations of Ostwald ripening in elastically stressed solids: I. Development of microstructure [J]. Acta Mater., 2004, 52: 1353
doi: 10.1016/j.actamat.2003.11.037
26 Sun W, Qin X Z, Guo J T, et al. Degeneration process and mechanism of primary MC carbides in a cast Ni-based superalloy [J]. Acta Metall. Sin., 2016, 52: 455
孙 文, 秦学智, 郭建亭 等. 铸造镍基高温合金中初生MC碳化物的退化过程和机理 [J]. 金属学报, 2016, 52: 455
27 Xiao X, Zeng C, Hou J S, et al. The decomposition behavior of primary MC carbide in nickel base directionally solidified superalloy DZ444 [J]. Acta Metall. Sin., 2014, 50: 1031
肖 旋, 曾 超, 侯介山 等. 定向凝固DZ444镍基高温合金初生MC碳化物的分解行为 [J]. 金属学报, 2014, 50: 1031
28 Cui L Q. Investigation of microstructures and mechanical properties of M951G nickel-base superalloy [D]. Shenyang: University of Science and Technology of China (Institute of Metal Research, CAS), 2019
崔路卿. M951G镍基高温合金微观组织和力学性能研究 [D]. 沈阳: 中国科学技术大学(中国科学院金属研究所), 2019
29 Pollock T M, Argon A S. Creep resistance of CMSX-3 nickel base superalloy single crystals [J]. Acta Metall. Mater., 1992, 40: 1
doi: 10.1016/0956-7151(92)90195-K
30 Shi Z X, Liu S Z, Zhao J Q. Effect of C content on microstructures and stress rupture properties of a single crystal superalloy [J]. Nonferrous Met. Mater. Eng., 2018, 39(5): 1
史振学, 刘世忠, 赵金乾. C含量对一种单晶高温合金组织和持久性能的影响 [J]. 有色金属材料与工程, 2018, 39(5): 1
[1] LU Nannan, GUO Yimo, YANG Shulin, LIANG Jingjing, ZHOU Yizhou, SUN Xiaofeng, LI Jinguo. Formation Mechanisms of Hot Cracks in Laser Additive Repairing Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1243-1252.
[2] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[3] WANG Lei, LIU Mengya, LIU Yang, SONG Xiu, MENG Fanqiang. Research Progress on Surface Impact Strengthening Mechanisms and Application of Nickel-Based Superalloys[J]. 金属学报, 2023, 59(9): 1173-1189.
[4] ZHENG Liang, ZHANG Qiang, LI Zhou, ZHANG Guoqing. Effects of Oxygen Increasing/Decreasing Processes on Surface Characteristics of Superalloy Powders and Properties of Their Bulk Alloy Counterparts: Powders Storage and Degassing[J]. 金属学报, 2023, 59(9): 1265-1278.
[5] ZHANG Jian, WANG Li, XIE Guang, WANG Dong, SHEN Jian, LU Yuzhang, HUANG Yaqi, LI Yawei. Recent Progress in Research and Development of Nickel-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1109-1124.
[6] LI Jingren, XIE Dongsheng, ZHANG Dongdong, XIE Hongbo, PAN Hucheng, REN Yuping, QIN Gaowu. Microstructure Evolution Mechanism of New Low-Alloyed High-Strength Mg-0.2Ce-0.2Ca Alloy During Extrusion[J]. 金属学报, 2023, 59(8): 1087-1096.
[7] DING Hua, ZHANG Yu, CAI Minghui, TANG Zhengyou. Research Progress and Prospects of Austenite-Based Fe-Mn-Al-C Lightweight Steels[J]. 金属学报, 2023, 59(8): 1027-1041.
[8] LIU Xingjun, WEI Zhenbang, LU Yong, HAN Jiajia, SHI Rongpei, WANG Cuiping. Progress on the Diffusion Kinetics of Novel Co-based and Nb-Si-based Superalloys[J]. 金属学报, 2023, 59(8): 969-985.
[9] ZHANG Haifeng, YAN Haile, FANG Feng, JIA Nan. Molecular Dynamic Simulations of Deformation Mechanisms for FeMnCoCrNi High-Entropy Alloy Bicrystal Micropillars[J]. 金属学报, 2023, 59(8): 1051-1064.
[10] CHEN Liqing, LI Xing, ZHAO Yang, WANG Shuai, FENG Yang. Overview of Research and Development of High-Manganese Damping Steel with Integrated Structure and Function[J]. 金属学报, 2023, 59(8): 1015-1026.
[11] YUAN Jianghuai, WANG Zhenyu, MA Guanshui, ZHOU Guangxue, CHENG Xiaoying, WANG Aiying. Effect of Phase-Structure Evolution on Mechanical Properties of Cr2AlC Coating[J]. 金属学报, 2023, 59(7): 961-968.
[12] SUN Rongrong, YAO Meiyi, WANG Haoyu, ZHANG Wenhuai, HU Lijuan, QIU Yunlong, LIN Xiaodong, XIE Yaoping, YANG Jian, DONG Jianxin, CHENG Guoguang. High-Temperature Steam Oxidation Behavior of Fe22Cr5Al3Mo-xY Alloy Under Simulated LOCA Condition[J]. 金属学报, 2023, 59(7): 915-925.
[13] ZHANG Deyin, HAO Xu, JIA Baorui, WU Haoyang, QIN Mingli, QU Xuanhui. Effects of Y2O3 Content on Properties of Fe-Y2O3 Nanocomposite Powders Synthesized by a Combustion-Based Route[J]. 金属学报, 2023, 59(6): 757-766.
[14] FENG Aihan, CHEN Qiang, WANG Jian, WANG Hao, QU Shoujiang, CHEN Daolun. Thermal Stability of Microstructures in Low-Density Ti2AlNb-Based Alloy Hot Rolled Plate[J]. 金属学报, 2023, 59(6): 777-786.
[15] LIU Junpeng, CHEN Hao, ZHANG Chi, YANG Zhigang, ZHANG Yong, DAI Lanhong. Progress of Cryogenic Deformation and Strengthening-Toughening Mechanisms of High-Entropy Alloys[J]. 金属学报, 2023, 59(6): 727-743.
No Suggested Reading articles found!