High Temperature Steam Oxidation Behavior of Zr-1Nb- xFe Alloy Under Simulated LOCA Condition
WANG Jinxin1, YAO Meiyi1(), LIN Yuchen1, CHEN Liutao2, GAO Changyuan2, XU Shitong1, HU Lijuan1, XIE Yaoping1, ZHOU Bangxin1
1 Institute of Materials, Shanghai University, Shanghai 200072, China 2 China Nuclear Power Technology Research Institute Co. Ltd., Shenzhen 518031, China
Cite this article:
WANG Jinxin, YAO Meiyi, LIN Yuchen, CHEN Liutao, GAO Changyuan, XU Shitong, HU Lijuan, XIE Yaoping, ZHOU Bangxin. High Temperature Steam Oxidation Behavior of Zr-1Nb- xFe Alloy Under Simulated LOCA Condition. Acta Metall Sin, 2024, 60(5): 670-680.
Zirconium alloys are widely used as fuel cladding materials in water-cooled nuclear reactors due to their properties such as small thermal neutron absorption cross section, good corrosion resistance to high-temperature steam and high-pressure water, excellent mechanical properties and good compatibility with UO2. However, under loss of coolant accident (LOCA) conditions, zirconium alloy undergoes high-temperature steam oxidation and loses its structural integrity, threatening nuclear reactor safety. With the development of the nuclear power industry, increasing demands are put forward for zirconium alloys to withstand higher burnup; hence, studying their behavior under high-temperature steam oxidation during simulated LOCA is crucial. Fe is a significant alloying element in zirconium alloys, and its addition can improve their properties. Zr-1Nb alloy is a commercial alloy with excellent corrosion resistance, and adding an appropriate amount of Fe (0.1%-0.4%; mass fraction) can further enhance the corrosion resistance of the Zr-1Nb alloy under normal operating conditions. However, the effect of adding Fe on the high-temperature steam oxidation behavior of the Zr-1Nb alloy is unclear. Therefore, the oxidation behavior of Zr-1Nb-xFe (x = 0, 0.05, 0.2, and 0.4; mass fraction, %) alloys were investigated in steam at 800, 900, 1000, 1100, and 1200oC for 3600 s using a simultaneous thermal analyzer with a steam generator. The microstructure and microhardness of the samples before and after oxidation were analyzed using a metallographic microscope and Vickers hardness tester. The results revealed that adding Fe generally reduced the high-temperature steam oxidation resistance of Zr-1Nb-xFe alloys from 800oC to 1100oC for 3600 s. The effect of Fe contents on the oxidation behavior of the Zr-1Nb alloy was complex and did not show a consistent change with increasing Fe content. When oxidized at 1200oC for 3600 s, the difference in Fe content had hardly any effect on the high-temperature steam oxidation resistance of Zr-1Nb-xFe alloys. As the oxidation temperature increased, the oxidation kinetics of the four alloys generally changed from a parabolic to a linear pattern, even occurring to multiple transitions, which was closely related to the change process of the α↔β phase for the zirconium matrix and the monoclinic (m) ↔ tetragonal (t) phase for ZrO2.
Table 1 Chemical compositions of Zr-1Nb-xFe alloys
Fig.1 Oxidation kinetics curves of four alloys oxidized in 800oC (a), 900oC (b), 1000oC (c), 1100oC (d), and 1200oC (e) steam for 3600 s
T / oC
Alloy
Transition point / s
lnKn
n
800
0Fe
-
0.32
0.56
0.05Fe
-
-0.80
0.72
0.2Fe
-
0.34
0.58
0.4Fe
-
0.33
0.58
900
0Fe
-
1.22
0.52
0.05Fe
-
1.29
0.53
0.2Fe
-
1.14
0.53
0.4Fe
-
0.70
0.60
1000
0Fe
-
1.60
0.56
0.05Fe
679
-0.02
0.78
0.01
1.08
1267
0.11
0.61
0.2Fe
-
0.96
0.67
0.4Fe
-
1.60
0.56
1100
0Fe
-
0.08
0.88
0.05Fe
-
-0.59
0.98
0.2Fe
-
1.49
0.72
0.4Fe
1533
-0.09
0.96
-0.02
0.61
1200
0Fe
1877
0.47
0.93
-0.01
0.61
0.05Fe
1983
0.47
0.93
0.01
0.60
0.2Fe
2075
0.49
0.93
0.07
0.60
0.4Fe
2348
0.56
0.92
0.02
0.58
Table 2 Oxidation kinetic parameters of four alloys oxidized in 800-1200oC steam for 3600 s
T / oC
F0.05
F0.2
F0.4
800
22.30
20.45
19.11
900
19.09
4.06
10.44
1000
24.71
22.05
0.31
1100
19.45
10.73
9.03
1200
-1.52
-2.36
-1.00
Table 3 Compared to 0Fe alloy, the percentages of weight gain change for 0.05Fe, 0.2Fe, and 0.4Fe alloys oxidized in 800-1200oC steam for 3600 s
Fig.2 Cross-sectional OM images of 0Fe (a1, a2), 0.05Fe (b1, b2), 0.2Fe (c1, c2), and 0.4Fe (d1, d2) alloys oxidized in 800oC steam for 3600 s (Figs.2a2-d2 are the enlarged images of middle area of Figs.2a1-d1, respectively)
Fig.3 Cross-sectional OM images of 0Fe (a1, a2), 0.05Fe (b1, b2), 0.2Fe (c1, c2), and 0.4Fe (d1, d2) alloys oxidized in 900oC steam for 3600 s (Figs.3a2-d2 are the enlarged images of middle area of Figs.3a1-d1, respectively)
Fig.4 Cross-sectional OM images of 0Fe (a1-a3), 0.05Fe (b1-b3), 0.2Fe (c1-c3), and 0.4Fe (d1-d3) alloys oxidized in 1000oC (a1-d1), 1100oC (a2-d2), and 1200oC (a3-d3) steam for 3600 s
Fig.5 Layer thickness ratios of four alloys oxidized in 800oC (a), 900oC (b), 1000oC (c), 1100oC (d), and 1200oC (e) steam for 3600 s
T / oC
Alloy
α-Zr(O)
Prior-β
800
0Fe
149
-
0.05Fe
146
-
0.2Fe
156
-
0.4Fe
200
-
900
0Fe
223
-
0.05Fe
324
166
0.2Fe
241
170
0.4Fe
342
203
1000
0Fe
407
306
0.05Fe
478
387
0.2Fe
380
308
0.4Fe
424
368
1100
0Fe
-
486
0.05Fe
-
341
0.2Fe
-
400
0.4Fe
-
462
1200
0Fe
853
-
0.05Fe
943
-
0.2Fe
613
-
0.4Fe
694
-
Table 4 Vickers hardnesses of different tissue layers in cross section of four alloys oxidized in 800-1200oC steam for 3600 s
1
Jia Y J, Lin X H, Zou X W, et al. Research & development history, status and prospect of zirconium alloys[J]. Mater. China, 2022, 41: 354
Kim J H, Lee M H, Choi B K, et al. Embrittlement behavior of zircaloy-4 cladding during oxidation and water quench[J]. Nucl. Eng. Des., 2005, 235: 67
doi: 10.1016/j.nucengdes.2004.08.030
5
Gao Y, Yang M X, Hu Y, et al. Effect of cooling rate on residual plasticity of homemade ZIRLO alloy after LOCA[J]. Atomic. Energy Sci. Technol., 2019, 53: 1310
Grosse M, Stuckert J, Steinbrück M, et al. Secondary hydriding during LOCA—Results from the QUENCH-L0 test[J]. J. Nucl. Mater., 2012, 420: 575
doi: 10.1016/j.jnucmat.2011.11.045
7
Shishov V N. The evolution of microstructure and deformation stability in Zr-Nb-(Sn,Fe) alloys under neutron irradiation[J]. J. ASTM Int., 2010, 7: 1
8
Qiu J, Zhao W J, Guilbert T, et al. High temperature oxidation behaviours of three zirconium alloys[J]. Acta. Metall Sin., 2011, 47: 1216
doi: 10.3724/SP.J.1037.2011.00211
Gao W, Zhang X, Wang Z P, et al. Study of oxidation behavior of M5 and ZIRLO zirconium alloy in high temperature vapor[J]. J. Xi'an Technol. Univ., 2016, 36: 473
Huang W. Conventional corrosion behavior and high temperature steam oxidation behavior under simulated LOCA for Zr-1Nb-xM alloys[D]. Shanghai: Shanghai University, 2020
Baek J H, Park K B, Jeong Y H. Oxidation kinetics of Zircaloy-4 and Zr-1Nb-1Sn-0.1Fe at temperatures of 700-1200oC[J]. J. Nucl. Mater., 2004, 335: 443
doi: 10.1016/j.jnucmat.2004.08.007
12
Liu Y Z, Qiu J, Liu X, et al. Oxidation kinetics of N18 zirconium alloy at temperatures of 600-1200oC in steam[J]. Nucl. Power Eng., 2010, 31(2): 85
Ma S C, Sun Y Z, Chen W C, et al. Study of fuel cladding-steam reaction under a loss of coolant-accident (LOCA)[J]. Atomic Energy Sci Technol., 1993, 27: 376
Zhang J N, Yao M Y, Zha X P, et al. Effect of Nb addition on high temperature steam oxidation behavior of Zr-0.75Sn-0.35Fe-0.15Cr alloy[J]. Rare Met. Mater. Eng., 2022, 51: 1837
Chabretou V, Hoffmann P B, Trapp-Pritsching S, et al. Ultra low tin quaternary alloys PWR performance-impact of tin content on corrosion resistance, irradiation growth, and mechanical properties[A]. Zirconium in the Nuclear Industry: 16th International Symposium[C]. West Conshohocken: American Society for Testing and Materials, 2011: 1
17
Kim H G, Park J Y, Jeong Y H. Ex-reactor corrosion and oxide characteristics of Zr-Nb-Fe alloys with the Nb/Fe ratio[J]. J. Nucl. Mater., 2005, 345: 1
doi: 10.1016/j.jnucmat.2005.04.061
18
Wang R S, Weng L K, Zhang Y W, et al. Development of research on corrosion resistance of Zr-Nb alloy[J]. Mater. Rep., 2011, 25(13): 10
Toffolon-Masclet C, Barbéris P, Brachet J C, et al. Study of Nb and Fe precipitation in α-phase temperature range (400 to 500℃) in Zr-Nb-(Fe-Sn) alloys[A]. Zirconium in the Nuclear Industry: 14th International Symposium[C]. Stockholm, Sweden: American Society for Testing and Materials, 2005: 1
20
Wang R S, Weng L K, Zhang Y W, et al. Effect of Fe on the precipitate characteristics and out-of-pile corrosion behavior of Zr-1Nb-xFe alloys[J]. Mater. Sci. Forum, 2013, 743-744: 1
doi: 10.4028/www.scientific.net/MSF
21
Broy Y, Garzarolli F, Seibold A, et al. Influence of transition elements Fe, Cr, and V on long-time corrosion in PWRs[A]. Zirconium in the Nuclear Industry: 12th International Symposium[C]. West Conshohocken: American Society for Testing and Materials, 2000: 609
22
Garzarolli F, Broy Y, Busch R A. Comparison of the long-time corrosion behavior of certain Zr alloys in PWR, BWR, and laboratory tests[A]. Zirconium in the nuclear industry: 11th International Symposium[C]. West Conshohocken: American Society for Testing and Materials, 1996: 850
23
Li M S. High Temperature Corrosion of Metals[M]. Beijing: Metallurgical Industry Press, 2001: 36
李美栓. 金属的高温腐蚀[M]. 北京: 冶金工业出版社, 2001: 36
24
Wang D, Zhang Y P, Wu S H, et al. Development of oxidation model for zirconium alloy cladding and application in the analysis of cladding behavior under loss of coolant accident[J]. J. Nucl. Mater., 2022, 561: 153564
doi: 10.1016/j.jnucmat.2022.153564
25
Négyesi M, Burda J, Bláhová O, et al. The influence of hydrogen on oxygen distribution inside Zry-4 fuel cladding[J]. J. Nucl. Mater., 2011, 416: 288
doi: 10.1016/j.jnucmat.2011.06.013
26
Li C B, Song Q, Yang X W, et al. Experimental investigation of the phase relations in the Fe-Zr-Y ternary system[J]. Materials, 2022, 15: 593
doi: 10.3390/ma15020593
27
Chiang T W, Chernatynskiy A, Noordhoek M J, et al. Anisotropy in oxidation of zirconium surfaces from density functional theory calculations[J]. Comput. Mater. Sci., 2015, 98: 112
doi: 10.1016/j.commatsci.2014.10.052
28
Noordhoek M J, Liang T, Chiang T W, et al. Mechanisms of Zr surface corrosion determined via molecular dynamics simulations with charge-optimized many-body (COMB) potentials[J]. J. Nucl. Mater., 2014, 452: 285
doi: 10.1016/j.jnucmat.2014.05.023
29
Hou X M, Chou K C. Investigation of the effects of temperature and oxygen partial pressure on oxidation of zirconium carbide using different kinetics models[J]. J. Alloys. Compd., 2011, 509: 2395
doi: 10.1016/j.jallcom.2010.11.028
30
Nagase F, Otomo T, Uetsuka H. Oxidation kinetics of low-Sn zircaloy-4 at the temperature range from 773 to 1,573 K[J]. J. Nucl. Sci. Technol., 2003, 40: 213
doi: 10.1080/18811248.2003.9715351
31
Yan Y, Garrison B E, Smith T S, et al. Investigation of high-temperature oxidation kinetics and residual ductility of oxidized samples of sponge-based E110 alloy cladding tubes[J]. MRS Adv., 2017, 2: 1203
doi: 10.1557/adv.2016.641
32
Ackermann O R J, Garg S P, Rauh E G. High-temperature phase diagram for the system Zr-O[J]. J. Am. Ceram. Soc., 1977, 60: 341
doi: 10.1111/jace.1977.60.issue-7-8
33
Yao M Y, Luan B F. Zirconium alloys used in water-cooled reactors[A]. Nuclear Reactor Materials[M]. Shanghai: Shanghai Jiao Tong University Press, 2021: 524
Ma M X, Zhu D C, Wang Z X, et al. Effect of Zr addition on microstructure and wear properties of CoCrCuFeMn high-entropy alloy[J]. Adv. Eng. Sci., 2021, 53(6): 204
Uetsuka H, Furuta T, Kawasaki S. Embrittlement of Zircaloy-4 due to oxidation in environment of stagnant steam[J]. J. Nucl. Sci. Technol., 1982, 19: 158
doi: 10.1080/18811248.1982.9734128
36
Zha X P. Oxidation behavior and mechanical properties of Zr-0.75Sn-0.35Fe-0.15Cr-xNb alloy under simulated loss of coolant accident conditions[D]. Shanghai: Shanghai University, 2022: 61