Please wait a minute...
Acta Metall Sin  2012, Vol. 48 Issue (4): 450-454    DOI: 10.3724/SP.J.1037.2011.00677
论文 Current Issue | Archive | Adv Search |
EFFECT OF CARBON AND NIOBIUM CONTENTS ON PHASE PARAMETERS AND CREEP RUPTURE TIME AT 650 ℃ FOR TP347HFG STEEL
PENG Zhifang1, DANG Yingying1,PENG Fangfang2
1. School of Power and Mechanical Engineering, Wuhan University, Wuhan 430072
2. Materials Research Department, Dongfang Boiler Group Co. LTD., Zigong 643001
Cite this article: 

PENG Zhifang, DANG Yingying,PENG Fangfang. EFFECT OF CARBON AND NIOBIUM CONTENTS ON PHASE PARAMETERS AND CREEP RUPTURE TIME AT 650 ℃ FOR TP347HFG STEEL. Acta Metall Sin, 2012, 48(4): 450-454.

Download:  PDF(555KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  TP347HFG is an austenitic stainless steel which is considered to be among the grades with the highest potential for use in super critical boilers. It has been reported that micro-addition of Nb and a relatively low level of carbon content can obviously enhance creep resistance in this class of materials. Thus, C and Nb content optimization is of significant interest within the composition range from ASME standard. In this study, the effect of carbon and niobium contents on phase parameters (phase composition, volume fraction and size) and creep rupture time and the related mechanism were investigated for TP347HFG steel. Creep rupture tests were carried out under applied stresses of 230 and 150 MPa, respectively, at 650 ℃. The rupture times of two samples with different C and Nb contents were 199 and 420 h at 230 MPa, 2426 and 8837 h at 150 MPa, respectively. The sample with lower C content and higher Nb content corresponded to longer rupture time at each of the stress level. The EPMA-EDS+MPSM (multiphase separation method) and TEM-EDS results show that the creep rupture times were remarkably increased for the sample with relatively lower C and higher Nb contents, which correspond to increasing the volume fraction of nano-scale MX and decreasing that of M23C6 as well as retarding the coarsening of M23C6. On the other hand, more Cr maintained in matrix could also benefit the creep rupture lives. In addition, Thermo-Calc software was used to calculate the mole fraction and the concentration of precipitated phases with various combinations of C and Nb contents over the range of 500-1300℃ and the results were in good agreement with the experimental ones.
Key words:  TP347HFG steel      carbon and niobium content      phase parameter      creep rupture time     
Received:  01 November 2011     

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2011.00677     OR     https://www.ams.org.cn/EN/Y2012/V48/I4/450

[1] Iseda A, Okada H, Semba H, Igarashi M.  Energy Mater, 2007; 2: 199

[2] Yagi K, Merckling G, Kern T U, Irie H, Warlimont H. Creep Properties of Heat Resistant Steels and Superalloys.Berlin: Springer-Verlag, 2004: 249

[3] Erneman J, Schwind M, Andren H O, Nilsson J O, Wilson A,Agren J.  Acta Mater, 2006; 54: 67

[4] Nilsson J O.  Mater Sci Forum, 2007; 539-543: 4920

[5] Sourmail T.  Mater Sci Technol, 2001; 17: 1

[6] Thorvaldsson T, Dunlop G L.  Met Sci, 1980; 1: 513

[7] Laha K, Kyono J, Sasaki T, Kishimoto S, Shinya.  Metall Mater Trans,2005; 36A: 399

[8] Thorvaldsson T, Dunlop G L.  Met Sci, 1982; 16: 184

[9] Grot A S, Spruiell J E.  Metall Trans, 1975; 6A: 2023

[10] Keown S R, Pickering F B.  Creep Strength in Steel and High-Temperature Alloys. London: The Metals Society, 1974: 134

[11] Wadsworth J, Keown S R, Woodhead J H.  Met Sci, 1976; 10: 105

[12] Adamson J M, Martin J W.  J Iron Steel Inst, 1972; 210: 271

[13] Yu H Y, Dong J X, Xie X S.  Chin J Mater Res, 2010; 24: 449

     (于鸿垚, 董建新, 谢锡善.材料研究学报, 2010; 24: 449)

[14] Guo F Q, Cheng S C, Liu Z D, Bao H S, Zhang D M. Mater Mech Eng, 2007; 31: 11

     (郭富强, 程世长, 刘正东, 包汉生, 张代明. 机械工程材料, 2007; 31: 11)

[15] Taneike M, Sawada K, Abe F.  Metall Mater Trans, 2004; 35A: 1255

[16] Peng Z F, Yang Z G, Yan G Z, Chen S G, Zhou Y G. In: Academic Committees of the Superalloys, CSM ed.,  High-Temperature Structural Materials for Power and Energy Resource-Proc 11th Annual Chinese Conference on Superalloys, Shanghai: Metallurgical Industry Press, 2007: 666

     (彭志方, 杨志刚, 阎光宗, 陈盛广, 周元贵. 见: 中国金属学会高温材料分会主编,动力与能源用高温结构材料-第11届中国高温合金年会论文集, 上海: 冶金工业出版社,2007: 666)

[17] Peng F F, Peng Z F, Chen F Y. In: Chinese Society for Electrical Engineering ed.,  Symposium on Sinicization of New Type Steels for 600 MW/1000 MW Ultra-Supercritical Units, Yangzhou: China Electric Power Journal Net, 2009: 175

     (彭芳芳, 彭志方, 陈方玉. 见: 中国电机工程学会主编, 600 MW /1000 MW超超临界机组新型钢国产化研讨会报告文集, 扬州: 中国电力期刊网, 2009: 175)

[18] Peng Z F, Peng F F, Chen F Y.  Electr Power Constr, 2009; 30(12): 1

     (彭志方, 彭芳芳, 陈方玉. 电力建设, 2009; 30(12): 1)

[19] Peng Z F, Cai L S, Dang Y Y, Zhao L, Peng F F, Yang Z G, Yan G Z,Chen S G, Zhou J, Zhou Y G.  Mater Sci Forum, 2011; 706-709: 2450

[20] Kuai C G, Peng Z F.  Acta Metall Sin, 2008; 44: 897

     (蒯春光, 彭志方. 金属学报, 2008; 44: 897)
No related articles found!
No Suggested Reading articles found!