Please wait a minute...
Acta Metall Sin  2015, Vol. 51 Issue (4): 492-498    DOI: 10.11900/0412.1961.2014.00527
Current Issue | Archive | Adv Search |
REAL-TIME OBSERVATION OF SOLIDIFICATION MICROSTRUCTURE IN LASER REMELTING POOL
WANG Lilin(), LIN Xin, WANG Yonghui, YU Honglei, HUANG Weidong
State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an 710072
Cite this article: 

WANG Lilin, LIN Xin, WANG Yonghui, YU Honglei, HUANG Weidong. REAL-TIME OBSERVATION OF SOLIDIFICATION MICROSTRUCTURE IN LASER REMELTING POOL. Acta Metall Sin, 2015, 51(4): 492-498.

Download:  HTML  PDF(6100KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The final quality of parts fabricated by high energy beam (laser, electron beam and arc) processing technology is determined by solidification microstructure formation in the molten pool, which attracts lot of attention of researches. However, real-time observation of solidification microstructure formation in the molten metal pool is very difficult because of its high temperature, rapid solidification and opacity. In this work, using a transparent model alloy of succinonitrile-2.0% (mass fraction) ethanol (SCN-2.0%Eth), the solidification microstructure evolution in the molten pool during laser surface remelting (001) crystal plane of a single-crystal substrate was real-time observed as the laser scanning direction deviated different angles from [100] crystal orientation of the substrate. It was found that and dendritic columns grow symmetrically in the molten pool when the scanning direction parallels to the [100] crystal direction. Dendritic columns grow asymmetrically in the molten pool when the scanning direction deviates an angle of 20° from the [100] crystal orientation. Specifically, dendritic columns always grow at one side of the molten pool while [100] and [010] dendritic columns compete to grow alternately at the other side. [100] and dendritic columns grow perpendicular to each other in the molten pool when the scanning direction deviates an angle of 45° from the [100] crystal orientation. According to the preferential growth criterion of dendrite, a model describing the dendritic growth behavior in laser remelting pool was established. It can explain the experimental results well. The results showed that the solidification microstructure formation in laser remelting pool is influenced by both pool morphology and crystal orientation of the substrate.

Key words:  laser remelting      single crystal      molten pool      dendrite      transparent model alloy      real-time observation     
ZTFLH:  TG24  
Fund: Supported by National Natural Science Foundation of China (Nos.51271213 and 51323008), National Basic Research Program of China (No.2011CB610402), China Postdoctoral Science Foundation (No.2013M542384) and Specialized Research Fund for the Doctoral Program of Higher Education (No.20116102110016)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2014.00527     OR     https://www.ams.org.cn/EN/Y2015/V51/I4/492

Fig.1  Schematic of real time observation apparatus of laser remelting process (x, y—coordinates of the motion platform, v—scanning velocity)
Fig.2  Macroscopic morphology evolution of laser remelting pool with laser scanning time t =1 s (a), 3 s (b) and 51 s (c)
Fig.3  Dendritic growth evolution in laser remelting pool with t =5 s (a) and 9 s (b) when the scanning direction parallels to [100] crystal orientation
Fig.4  Dendritic growth evolution in laser remelting pool with t =3 s (a), 7 s (b), 8 s (c), 14 s (d), 19 s (e), 21 s (f) and after remelting (g) when the scanning direction deviates 20︒ from [100] crystal orientation
Fig.5  Dendritic growth evolution in laser remelting pool with t =7 s (a) and 22 s (b) when the scanning direction deviates 45° from [100] crystal orientation
Fig.6  Schematic of dendritic growth in laser remelting pool when the scanning direction deviates ? from [100] crystal orientation ( 2θ —rear angle of the molten pool, w—angle between the scanning direction and the normal direction of solidification interface, ? —angle between the scanning direction and [100] crystal orientation, vi —normal velocity of solidification interface, vU[100] —[100] dendrite growth velocity at the up side, vU[010] —[010] dendrite growth velocity at the up side, vD[100] —[100] dendrite growth velocity at the down side, vD[01ˉ0] — [01ˉ0] dendrite growth velocity at the down side)
Fig.6  Schematic of dendritic growth in laser remelting pool when the scanning direction deviates ? from [100] crystal orientation ( 2θ —rear angle of the molten pool, w—angle between the scanning direction and the normal direction of solidification interface, ? —angle between the scanning direction and [100] crystal orientation, vi —normal velocity of solidification interface, vU[100] —[100] dendrite growth velocity at the up side, vU[100] —[010] dendrite growth velocity at the up side, vU[100] —[100] dendrite growth velocity at the down side, vD[01ˉ0]—[01ˉ0] dendrite growth velocity at the down side)
Fig.7  Dendritic growth diagram of laser remelting pool
[1] Huang W D, Lin X. Mater China, 2010; 29(6): 13
(黄卫东, 林 鑫. 中国材料进展, 2010; 29(6): 13)
[2] Zhang B G, Zhao J, Feng J C. Trans China Weld Inst, 2011; 32(11): 108
(张秉刚, 赵 健, 冯吉才. 焊接学报, 2011; 32(11): 108 )
[3] David S A, Babu S S, Vitek J M. JOM, 2003; 55(6): 14
[4] Babu S S, Martukantz R P, Parks K D, David S A. Metall Trans, 2002; 33A: 1189
[5] Lin X,Yang H O, Chen J, Huang W D. Acta Metall Sin, 2006; 42: 361
(林 鑫, 杨海欧, 陈 静, 黄卫东. 金属学报, 2006; 42: 361)
[6] Pang Q Y, Li Y M, Huang W D, Lin X, Ding G L, Zhou Y H. Acta Metall Sin, 1996; 32: 720
(潘清跃, 李延民, 黄卫东, 林 鑫, 丁国陆, 周尧和. 金属学报, 1996; 32: 720)
[7] Jin T, Sun X F, Zhao N R, Liu J L, Zhang J H, Hu Z Q. Acta Metall Sin, 2009; 45: 714
(金 涛, 孙晓峰, 赵乃仁, 刘金来, 张静华, 胡壮麒. 金属学报, 2009; 45: 714)
[8] Rappaz M, David S A, Vitek J M, Boatner L A. Metall Trans, 1989; 20A: 1125
[9] Rappaz M, David S A, Vitek J M, Boatner L A. Metall Trans, 1990; 21A: 1767
[10] Yang S, Huang W D, Liu W J, Su Y P, Zhou Y H. Acta Metall Sin, 2001; 37: 571
(杨 森, 黄卫东, 刘文今, 苏云鹏, 周尧和. 金属学报, 2001; 37: 571)
[11] Yang S. PhD Dissertation, Northwest Polytechnical University, Xi'an, 2000
(杨 森. 西北工业大学博士学位论文, 西安, 2000)
[12] Feng L P, Huang W D, Li Y M, Yang H O, Lin X. Acta Metall Sin, 2002; 38: 503
(冯莉萍, 黄卫东, 李延民, 杨海欧, 林 鑫. 金属学报, 2002; 38: 503)
[13] Feng L P, Huang W D, Lin X, Yang H O, Chen D R. Appl Laser, 2004; 24(3): 137
(冯莉萍, 黄卫东, 林 鑫, 杨海欧, 陈大融. 应用激光, 2004; 24(3): 137)
[14] Liu W, Dupont J N. Acta Mater, 2004; 52: 4833
[15] Liu W, Dupont J N. Acta Mater, 2005; 53: 1545
[16] Fallah V, Amoorezaei M, Provatas N, Corbin S F, Khajepour A. Acta Mater, 2012; 60: 1633
[17] Farzadi A, Do-Quang M, Serajzadeh S, Kokabi A H, Amberg G. Modell Simul Mater Sci Eng, 2008; 16: 065005
[18] Yin H, Felicelli S D. Acta Mater, 2010; 58: 1455
[19] Mishra S, Debroy T. Acta Mater, 2004; 52: 1183
[20] Zhan X H, Wei Y H, Ma R. Chin J Nonferrous Met, 2008; 18: 710
(占小红, 魏艳红, 马 瑞. 中国有色金属学报, 2008; 18: 710)
[21] Ma R. PhD Dissertation, Harbin Institute of Technology, 2010
(马 瑞. 哈尔滨工业大学博士学位论文, 2010)
[22] Huang A G, Yu S P, Li Z Y. Trans China Weld Inst, 2008; 29(4): 45
(黄安国, 余圣甫, 李志远. 焊接学报, 2008; 29(4): 45)
[23] Li Y B, Meng D Q, Liu K Z, Xie Z Q. Trans China Weld Inst, 2010; 31(4): 59
(李玉斌, 蒙大桥, 刘柯钊, 谢志强. 焊接学报, 2010; 31(4): 59 )
[24] Savage W F, Hrubec A J. Weld Res, 1972; 51(5): 260
[25] Trivedi R, David S A, Eshelman M A, Vitek J M, Babu S S, Hong T, DebRoy T. J Appl Phys, 2003; 93: 4885
[1] ZHANG Jian, WANG Li, XIE Guang, WANG Dong, SHEN Jian, LU Yuzhang, HUANG Yaqi, LI Yawei. Recent Progress in Research and Development of Nickel-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1109-1124.
[2] LI Jiarong, DONG Jianmin, HAN Mei, LIU Shizhong. Effects of Sand Blasting on Surface Integrity and High Cycle Fatigue Properties of DD6 Single Crystal Superalloy[J]. 金属学报, 2023, 59(9): 1201-1208.
[3] ZHAO Peng, XIE Guang, DUAN Huichao, ZHANG Jian, DU Kui. Recrystallization During Thermo-Mechanical Fatigue of Two High-Generation Ni-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1221-1229.
[4] LU Nannan, GUO Yimo, YANG Shulin, LIANG Jingjing, ZHOU Yizhou, SUN Xiaofeng, LI Jinguo. Formation Mechanisms of Hot Cracks in Laser Additive Repairing Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1243-1252.
[5] WANG Di, HE Lili, WANG Dong, WANG Li, ZHANG Siqian, DONG Jiasheng, CHEN Lijia, ZHANG Jian. Influence of Pt-Al Coating on Tensile Properties of DD413 Alloy at High Temperatures[J]. 金属学报, 2023, 59(3): 424-434.
[6] ZHANG Zixuan, YU Jinjiang, LIU Jinlai. Anisotropy of Stress Rupture Property of Ni Base Single Crystal Superalloy DD432[J]. 金属学报, 2023, 59(12): 1559-1567.
[7] GUO Dongwei, GUO Kunhui, ZHANG Fuli, ZHANG Fei, CAO Jianghai, HOU Zibing. A New Method for CET Position Determination of Continuous Casting Billet Based on the Variation Characteristics of Secondary Dendrite Arm Spacing[J]. 金属学报, 2022, 58(6): 827-836.
[8] MA Dexin, ZHAO Yunxing, XU Weitai, PI Libo, LI Zhongxing. Surface Effect on Eutectic Structure Distribution in Single Crystal Superalloy Castings[J]. 金属学报, 2021, 57(12): 1539-1548.
[9] ZHANG Shaohua, XIE Guang, DONG Jiasheng, LOU Langhong. Investigation on Eutectic Dissolution Behavior of Single Crystal Superalloy by Differential Scanning Calorimetry[J]. 金属学报, 2021, 57(12): 1559-1566.
[10] HE Siliang, ZHAO Yunsong, LU Fan, ZHANG Jian, LI Longfei, FENG Qiang. Effects of Hot Isostatic Pressure on Microdefects and Stress Rupture Life of Second-Generation Nickel-Based Single Crystal Superalloy in As-Cast and As-Solid-Solution States[J]. 金属学报, 2020, 56(9): 1195-1205.
[11] LIU Jinlai, YE Lihua, ZHOU Yizhou, LI Jinguo, SUN Xiaofeng. Anisotropy of Elasticity of a Ni Base Single Crystal Superalloy[J]. 金属学报, 2020, 56(6): 855-862.
[12] LI Yuancai, JIANG Wugui, ZHOU Yu. Effect of Nanopores on Tensile Properties of Single Crystal/Polycrystalline Nickel Composites[J]. 金属学报, 2020, 56(5): 776-784.
[13] MA Dexin,WANG Fu,XU Weitai,XU Wenliang,ZHAO Yunxing. Formation of Sliver Defects in Single CrystalCastings of Superalloys[J]. 金属学报, 2020, 56(3): 301-310.
[14] ZHAO Xu,SUN Yuan,HOU Xingyu,ZHANG Hongyu,ZHOU Yizhou,DING Yutian. Effect of Orientation Deviation on Microstructure and Mechanical Properties of Nickel-Based Single Crystal Superalloy Brazing Joints[J]. 金属学报, 2020, 56(2): 171-181.
[15] LI Jiarong,XIE Hongji,HAN Mei,LIU Shizhong. High Cycle Fatigue Behavior of Second Generation Single Crystal Superalloy[J]. 金属学报, 2019, 55(9): 1195-1203.
No Suggested Reading articles found!