|
|
ANALYSES OF SURFACE OXIDE FILMS ON GROUND ALLOY 690TT AFTER IMMERSION FOR DIFFERENT TIMES |
ZHANG Zhiming, WANG Jianqiu, HAN En-Hou, KE Wei |
State Key Laboratory for Corrosion and Protection, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 |
|
Cite this article:
ZHANG Zhiming WANG Jianqiu HAN En-Hou KE Wei. ANALYSES OF SURFACE OXIDE FILMS ON GROUND ALLOY 690TT AFTER IMMERSION FOR DIFFERENT TIMES. Acta Metall Sin, 2011, 47(7): 823-830.
|
Abstract The morphologies and structures of surface oxide films grown on ground Ni base alloy 690TT after immersion in the simulated hydrogenated primary water of pressured water reactors (PWRs) for different times were analyzed by various methods. After immersion for 35 h,\linebreak the ground alloy 690TT was covered with compact oxide particles. With the increase of the immersion time, the sample surfaces were covered with scattered big oxide particles and compact small oxide particles. Regardless of the immersion time, the grown oxide films are composed of spinel oxides and metallic Ni. After immersion for 720, 1440 and 2160 h, the oxide films are composed of three layers: the outmost layer is the separated big oxide particles which are rich in Fe and Ni; the intermediate layer is the compact small oxide particles rich in Cr, Fe and Ni; the inner layer is the continuous Cr oxides. The peak decompositions of the XPS results revealed that the Cr oxides in the inner layer are probably Cr2O3. The intermediate and inner layers in the oxide films could restrain the outward diffusion of metal atoms and also the inward diffusion of the oxygen atoms and then protect the matrix from further corrosion well. The average corrosion rate of the intermediate and inner layer decreased gradually with the immersion time increasing. Grinding treatment accelerated the growth of protective oxide film on alloy 690TT in the studied solution.
|
Received: 06 April 2011
|
Fund: Supported by National Basic Research Program of China (No.2011CB610502) and National Natural Science Foundation of China (No.51025104) |
[1] Han E H, Wang J Q, Wu X Q, Ke W. Acta Metall Sin, 2010; 46: 1379(韩恩厚, 王俭秋, 吴欣强, 柯伟, 金属学报, 2010; 46: 1379)[2] Zhou B X, Han E H. The Invited Lecture at the 30th annual Celebration Meeting for the Foundation of Chinese Society for Corrosion and Protection and the 5th National Conference for Corrosion and Protection, Beijing, Sept 14–16, 2009[3] Staehle R W, Gorman J A. Corrosion, 2003; 59: 931[4] Staehle R W. International Seminar on Materials Problems in Light Water Nuclear Power Plants: Status, Mitigation, Future Problems, Suzhou: Institute of Metal Research, CAS, Suzhou Nuclear Power Research Institute, the Second Research and Design Institute of Nuclear Industry, Feb 20–23, 2005[5] Warzee M, Hennaut J, Maurice M, Sonnen C, Waty J, Berge P. J Electrochem Soc, 1964; 112: 670[6] Ostwald C, Grabke H J. Corros Sci, 2004; 46: 1113[7] Scenini F, Newman R C, Cottis R A, Jacko R J. Corrosion, 2008; 64: 824[8] Scenini F, Newman R C, Cottis R A, Jacko R J. Corrosion 2007, Nashville, Tennessee, March 11—15, Paper No.07611[9] Tan L, Ren X, Sridharan K, Allen T R. Corros Sci, 2008; 50: 2040[10] Ding X S. Nucl Power Eng Technol, 2000; 13(4): 37(丁训慎. 核电工程与技术, 2000; 13(4): 37)[11] Terachi T, Totsuka N, Yamada T, Nakagawa T, Deguchi H, Horiuchi M, Oshitani M. J Nucl Sci Technol, 2003; 40: 509[12] Ziemniak S E, Hanson M. Corros Sci, 2006; 48: 498[13] Ziemniak S E, Hanson M. Corros Sci, 2002; 44: 2209[14] Nakagawa T, Totsuka N, Terachi T, Nakajima N. J Nucl Sci Technol, 2003; 40: 39[15] Ziemniak S E, Hanson M. Corros Sci, 2006; 48: 498[16] Hermas A A. Corros Sci, 2008; 50: 2498[17] Stefanov P, Stoychev D, Stoycheva M, Marinova T. Mater Chem Phys, 2000; 65: 212[18] Sun H, Wu X Q, Han E H. Corros Sci, 2009; 51: 2840[19] McIntype N S, Rummery T E, Cook M G, Owen D. J Electrochem Soc, 1976; 123: 1164[20] Machet A, Galtayries A, Zanna S, Klein L, Maurice V, Jolivet P, Foucault M, Combrade P, Scott P, Marcus P. Electrochim Acta, 2004; 49: 3957[21] McIntype N S, Zetaruk D G, Owen D. J Electrochem Soc, 1979; 126: 750[22] Carette F, Lafont M C, Chatainier G, Guinard L, Pieraggi B. Surf Interface Anal, 2002; 34: 135[23] Machet A, Galtayries A, Marcus P, Combrade P, Jolivet P, Scott P. Surf Interface Anal, 2002; 34: 197[24] Sun M C, Wu X Q, Zhang Z E, Han E H. J Supercrit Fluids, 2008; 47: 309[25] Panter J, Viguier B, Clou´e J M, Foucault M, Combrade P, Andrieu E. J Nucl Mater, 2006; 348: 213[26] Zhang Z M, Wang J Q, Han E H, Ke W. Corros Sci, 2011, submitted[27] Li M S. High Temperature Corrosion of Metals. Beijing: Metallurgical Industry Press, 2001: 162(李美栓. 金属的高温腐蚀. 北京: 机械工业出版社, 2001: 162)[28] Marchetti L, Perrin S, Raquet O, Pijolat M. Mater Sci Forum, 2008; 595–598: 529[29] Lister D H, Davidson R D, Mcalpine E. Corros Sci, 1987; 27: 113[30] Zhang Z M, Wang J Q, Han E H, Ke W. J Mater Sci Technol, 2011, accepted[31] Ziemniak S E, Hanson M, Sander P C. Corros Sci, 2008; 50: 2465[32] Zhang Z M, Wang J Q, Han E H, Ke W. Acta Metall Sin, 2011; 47: 831(张志明, 王俭秋, 韩恩厚, 柯伟. 金属学报, 2011; 47: 831) |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|