Please wait a minute...
Acta Metall Sin  2011, Vol. 47 Issue (7): 823-830    DOI: 10.3724/SP.J.1037.2011.00206
论文 Current Issue | Archive | Adv Search |
ANALYSES OF SURFACE OXIDE FILMS ON GROUND ALLOY 690TT AFTER IMMERSION FOR DIFFERENT TIMES
ZHANG Zhiming, WANG Jianqiu, HAN En-Hou, KE Wei
State Key Laboratory for Corrosion and Protection, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016
Cite this article: 

ZHANG Zhiming WANG Jianqiu HAN En-Hou KE Wei. ANALYSES OF SURFACE OXIDE FILMS ON GROUND ALLOY 690TT AFTER IMMERSION FOR DIFFERENT TIMES. Acta Metall Sin, 2011, 47(7): 823-830.

Download:  PDF(1610KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  The morphologies and structures of surface oxide films grown on ground Ni base alloy 690TT after immersion in the simulated hydrogenated primary water of pressured water reactors (PWRs) for different times were analyzed by various methods. After immersion for 35 h,\linebreak the ground alloy 690TT was covered with compact oxide particles. With the increase of the immersion time, the sample surfaces were covered with scattered big oxide particles and compact small oxide particles. Regardless of the immersion time, the grown oxide films are composed of spinel oxides and metallic Ni. After immersion for 720, 1440 and 2160 h, the oxide films are composed of three layers: the outmost layer is the separated big oxide particles which are rich in Fe and Ni; the intermediate layer is the compact small oxide particles rich in Cr, Fe and Ni; the inner layer is the continuous Cr oxides. The peak decompositions of the XPS results revealed that the Cr oxides in the inner layer are probably Cr2O3. The intermediate and inner layers in the oxide films could restrain the outward diffusion of metal atoms and also the inward diffusion of the oxygen atoms and then protect the matrix from further corrosion well. The average corrosion rate of the intermediate and inner layer decreased gradually with the immersion time increasing. Grinding treatment accelerated the growth of protective oxide film on alloy 690TT in the studied solution.
Key words:  Ni base alloy 690TT      grinding treatment      immersion time      oxide film      protective structure     
Received:  06 April 2011     
Fund: 

Supported by National Basic Research Program of China (No.2011CB610502) and National Natural Science Foundation of China (No.51025104)

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2011.00206     OR     https://www.ams.org.cn/EN/Y2011/V47/I7/823

[1] Han E H, Wang J Q, Wu X Q, Ke W. Acta Metall Sin, 2010; 46: 1379

(韩恩厚, 王俭秋, 吴欣强, 柯伟, 金属学报, 2010; 46: 1379)

[2] Zhou B X, Han E H. The Invited Lecture at the 30th annual Celebration Meeting for the Foundation of Chinese Society for Corrosion and Protection and the 5th National Conference for Corrosion and Protection, Beijing, Sept 14–16, 2009

[3] Staehle R W, Gorman J A. Corrosion, 2003; 59: 931

[4] Staehle R W. International Seminar on Materials Problems in Light Water Nuclear Power Plants: Status, Mitigation, Future Problems, Suzhou: Institute of Metal Research, CAS, Suzhou Nuclear Power Research Institute, the Second Research and Design Institute of Nuclear Industry, Feb 20–23, 2005

[5] Warzee M, Hennaut J, Maurice M, Sonnen C, Waty J, Berge P. J Electrochem Soc, 1964; 112: 670

[6] Ostwald C, Grabke H J. Corros Sci, 2004; 46: 1113

[7] Scenini F, Newman R C, Cottis R A, Jacko R J. Corrosion, 2008; 64: 824

[8] Scenini F, Newman R C, Cottis R A, Jacko R J. Corrosion 2007, Nashville, Tennessee, March 11—15, Paper No.07611

[9] Tan L, Ren X, Sridharan K, Allen T R. Corros Sci, 2008; 50: 2040

[10] Ding X S. Nucl Power Eng Technol, 2000; 13(4): 37

(丁训慎. 核电工程与技术, 2000; 13(4): 37)

[11] Terachi T, Totsuka N, Yamada T, Nakagawa T, Deguchi H, Horiuchi M, Oshitani M. J Nucl Sci Technol, 2003; 40: 509

[12] Ziemniak S E, Hanson M. Corros Sci, 2006; 48: 498

[13] Ziemniak S E, Hanson M. Corros Sci, 2002; 44: 2209

[14] Nakagawa T, Totsuka N, Terachi T, Nakajima N. J Nucl Sci Technol, 2003; 40: 39

[15] Ziemniak S E, Hanson M. Corros Sci, 2006; 48: 498

[16] Hermas A A. Corros Sci, 2008; 50: 2498

[17] Stefanov P, Stoychev D, Stoycheva M, Marinova T. Mater Chem Phys, 2000; 65: 212

[18] Sun H, Wu X Q, Han E H. Corros Sci, 2009; 51: 2840

[19] McIntype N S, Rummery T E, Cook M G, Owen D. J Electrochem Soc, 1976; 123: 1164

[20] Machet A, Galtayries A, Zanna S, Klein L, Maurice V, Jolivet P, Foucault M, Combrade P, Scott P, Marcus P. Electrochim Acta, 2004; 49: 3957

[21] McIntype N S, Zetaruk D G, Owen D. J Electrochem Soc, 1979; 126: 750

[22] Carette F, Lafont M C, Chatainier G, Guinard L, Pieraggi B. Surf Interface Anal, 2002; 34: 135

[23] Machet A, Galtayries A, Marcus P, Combrade P, Jolivet P, Scott P. Surf Interface Anal, 2002; 34: 197

[24] Sun M C, Wu X Q, Zhang Z E, Han E H. J Supercrit Fluids, 2008; 47: 309

[25] Panter J, Viguier B, Clou´e J M, Foucault M, Combrade P, Andrieu E. J Nucl Mater, 2006; 348: 213

[26] Zhang Z M, Wang J Q, Han E H, Ke W. Corros Sci, 2011, submitted

[27] Li M S. High Temperature Corrosion of Metals. Beijing: Metallurgical Industry Press, 2001: 162

(李美栓. 金属的高温腐蚀. 北京: 机械工业出版社, 2001: 162)

[28] Marchetti L, Perrin S, Raquet O, Pijolat M. Mater Sci Forum, 2008; 595–598: 529

[29] Lister D H, Davidson R D, Mcalpine E. Corros Sci, 1987; 27: 113

[30] Zhang Z M, Wang J Q, Han E H, Ke W. J Mater Sci Technol, 2011, accepted

[31] Ziemniak S E, Hanson M, Sander P C. Corros Sci, 2008; 50: 2465

[32] Zhang Z M, Wang J Q, Han E H, Ke W. Acta Metall Sin, 2011; 47: 831

(张志明, 王俭秋, 韩恩厚, 柯伟. 金属学报, 2011; 47: 831)
[1] SI Yongli, XUE Jintao, WANG Xingfu, LIANG Juhua, SHI Zimu, HAN Fusheng. Effect of Cr Addition on the Corrosion Behavior of Twinning-Induced Plasticity Steel[J]. 金属学报, 2023, 59(7): 905-914.
[2] LIU Laidi, DING Biao, REN Weili, ZHONG Yunbo, WANG Hui, WANG Qiuliang. Multilayer Structure of DZ445 Ni-Based Superalloy Formed by Long Time Oxidation at High Temperature[J]. 金属学报, 2023, 59(3): 387-398.
[3] SHEN Zhao, WANG Zhipeng, HU Bo, LI Dejiang, ZENG Xiaoqin, DING Wenjiang. Research Progress on the Mechanisms Controlling High-Temperature Oxidation Resistance of Mg Alloys[J]. 金属学报, 2023, 59(3): 371-386.
[4] SUN Rongrong, YAO Meiyi, LIN Xiaodong, ZHANG Wenhuai, QIU Yunlong, HU Lijuan, XIE Yaoping, YANG Jian, DONG Jianxin, CHENG Guoguang. Effect of Ti on the Corrosion Behavior of Fe22Cr5Al3Mo Alloy in 500oC Superheated Steam[J]. 金属学报, 2022, 58(5): 610-622.
[5] LIN Xiaodong, MA Haibin, REN Qisen, SUN Rongrong, ZHANG Wenhuai, HU Lijuan, LIANG Xue, LI Yifeng, YAO Meiyi. Corrosion Behaviors of Fe13Cr5Al4Mo Alloy in High-Temperature High-Pressure Water Environments[J]. 金属学报, 2022, 58(12): 1611-1622.
[6] QIAN Yue,SUN Rongrong,ZHANG Wenhuai,YAO Meiyi,ZHANG Jinlong,ZHOU Bangxin,QIU Yunlong,YANG Jian,CHENG Guoguang,DONG Jianxin. Effect of Nb on Microstructure and Corrosion Resistance of Fe22Cr5Al3Mo Alloy[J]. 金属学报, 2020, 56(3): 321-332.
[7] Xiaoyi ZHANG, Hailong SHANG, Bingyang MA, Rongbin LI, Geyang LI. Brazing of Coated Al Foil Filler to AlN Ceramic[J]. 金属学报, 2018, 54(4): 575-580.
[8] Zhongbo YANG,Wenjin ZHAO,Zhuqing CHENG,Jun QIU,Hai ZHANG,Hong ZHUO. Effect of Nb Content on the Corrosion Resistance of Zr-xNb-0.4Sn-0.3Fe Alloys[J]. 金属学报, 2017, 53(1): 47-56.
[9] Jiazhen WANG,Jianqiu WANG,En-Hou HAN. CORROSION BEHAVIOR OF ALLOY 800 IN NaOH AND ETA SOLUTIONS AT 300 ℃[J]. 金属学报, 2016, 52(5): 599-606.
[10] Meiqiong OU,Yang LIU,Xiangdong ZHA,Yingche MA,Leming CHENG,Kui LIU. CORROSION BEHAVIOR OF A NEW NICKEL BASE ALLOY IN SUPERCRITICAL WATERCONTAINING DIVERSE IONS[J]. 金属学报, 2016, 52(12): 1557-1564.
[11] Jianqiu WANG, Fa HUANG, Wei KE. CORROSION BEHAVIORS OF INCONEL 690TT AND INCOLOY 800MA STEAM GENERATOR TUBES IN HIGH TEMPERATURE HIGH PRESSURE WATER[J]. 金属学报, 2016, 52(10): 1333-1344.
[12] ZHANG Zhiming, WANG Jianqiu, HAN En-Hou, KE Wei. ANALYSIS OF SURFACE OXIDE FILM FORMED ON ELETROPOLISHED ALLOY 690TT IN HIGH TEMPERATURE AND HIGH PRESSURE WATER WITH SEQUENTIALLY DISSOLVED HYDROGEN AND OXYGEN[J]. 金属学报, 2015, 51(1): 85-92.
[13] CHEN Yan, WU Cuilan, XIE Pan, CHEN Wanglin, XIAO Hui, CHEN Jianghua. A PHASE-TRANSFORMATION-STRENGTHENED SURFACE LAYER ON Fe-20Mn-3Al-3Si STEEL FABRICATED BY MECHANICAL GRINDING[J]. 金属学报, 2014, 50(4): 423-430.
[14] TAO Nairong, LU Ke. PREPARATION TECHNIQUES FOR NANO-STRUCTURED METALLIC MATERIALS VIA PLASTIC DEFORMATION[J]. 金属学报, 2014, 50(2): 141-147.
[15] ZHANG Haixia, LI Zhongkui, ZHOU Lian, XU Bingshe, WANG Yongzhen. EFFECTS OF STRUCTURE AND INTERNAL STRESSES IN OXIDE FILMS ON CORROSION MECHANISM OF NEW ZIRCONIUM ALLOY[J]. 金属学报, 2014, 50(12): 1529-1537.
No Suggested Reading articles found!