Please wait a minute...
Acta Metall Sin  2010, Vol. 46 Issue (9): 1109-1114    DOI: 10.3724/SP.J.1037.2010.00220
论文 Current Issue | Archive | Adv Search |
WHOLE ANALYSIS APPROACH FOR RESIDUE TIME DISTRIBUTION CURVE IN MULTI-STRAND CONTINUOUS CASTING TUNDISH
LEI Hong1), ZHAO Yan2), BAO Jialin1), LIU Chengjun2), CHEN Haigeng2), HE Jicheng1)
1) Key Laboratory of Electromagnetic Processing of Materials, Ministry of Education, Northeastern University, Shenyang 110819
2) School of Materials and Metallurgy, Northeastern University, Shenyang 110819
Cite this article: 

LEI Hong ZHAO Yan BAO Jialin LIU Chengjun CHEN Haigeng HE Jicheng. WHOLE ANALYSIS APPROACH FOR RESIDUE TIME DISTRIBUTION CURVE IN MULTI-STRAND CONTINUOUS CASTING TUNDISH. Acta Metall Sin, 2010, 46(9): 1109-1114.

Download:  PDF(617KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The study of residue time distribution (RTD) curve is usually one of the effective methods to estimate the flow characteristics in the continuous casting tundish. In the past, the analysis model for RTD curve of one-strand is usually applied to estimate the individual strand data in multi-strand tundish, but the result obtained by such a model can not agree with the physical fact sometimes. In this paper, an analysis model is proposed to analyze flow characteristics in multi-strand tundish. First, the whole RTD curve of multi-strand tundish is obtained by the individual strand data. Second, classic analysis model is applied to analyze the whole RTD curve of multi-strand tundish. Third, average residence time is chosen as a key parameter to estimate the similarity of flow characteristics of each strand in the multi-strand tundish. Such an analysis approach can avoid the occurrence of the negative dead zone. And the volume ratio of dead zone satisfies the physical facts.

Key words:  continuous casting      multi-strand tundish      whole residue time distribution (RTD)      flow characterization      RTD curve     
Received:  10 May 2010     
ZTFLH: 

TF777

 
Fund: 

Supported by National High-Tech R&D Program of China (No.2009AA03Z530), National Natural Science Foundation of China and Shanghai Baosteel (No.50834010)

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2010.00220     OR     https://www.ams.org.cn/EN/Y2010/V46/I9/1109

[1] Sahai, Y. Ahuja, R.. Ironmaking Steelmaking, 1986; 13: 241 [2] Sahai Y, Emi T. ISIJ Int, 1996; 36: 667 [3] Singh S, Koria S C. Ironmaking Steelmaking, 1996; 23: 255 [4] Mazumdar D, Guthrie R I L. Steel Res, 1997; 68: 293 [5] Mazumdar D, Guthrie R I L. ISIJ Int, 1999; 39: 524 [6] Zong J H. Yi K W, Yoon J K. ISIJ Int, 1999; 39: 139 [7] Jha P, Dash S K. ISIJ Int, 2002; 42: 670 [8] Jha P K, Dash S K. Int J Numer Methods Heat Fluid Flow, 2002; 12: 560 [9] Lopez-Ramirez S, Barreto J D J, Vite-Martinez P, Serrano J A R, Duran-Valencia C. Metall Mater Trans B, 2004 ; 35: 957 [10] Solorio-Diaz G, Morales R D, Ramos-Banderas A. Int J Heat Mass Transfer, 2005; 48: 3574 [11] Liu S X, Yang X M, Du L, Li L, Liu C Z. ISIJ Int, 2008; 48: 1712 [12] Yan J X, Huang Y, Liu S T. J Iron Steel Res, 1998; 10: 64 (阎建新, 黄晔, 柳寿亭. 钢铁研究学报, 1998; 10: 64) [13] Fan J F, Zhang Q L, Zhu M Y, Lei H, Wang W Z.. Iron Steel, 1998; 33: 24 (樊俊飞, 张清朗, 朱苗勇, 雷洪, 王文忠. 钢铁, 1998; 33: 24) [14] Fu P Y, Chen W Q, Jin Z C. Steelmaking, 1998; 14: 33 (富平原, 陈伟庆, 靳自成. 炼钢, 1998; 14: 33) [15] Zheng S G, Zhu M Y, Jiang G L, Gong J P. Iron Steel; 2004, 39: 23 (郑淑国, 朱苗勇, 姜桂连, 宋嘉鹏. 钢铁2004; 39: 23) [16] Zheng S G, Zhu M Y. Acta Metall Sinica. 2005; 41: 1073 (郑淑国, 朱苗勇. 金属学报, 2005; 41: 1073) [17] Zheng S G, Zhu M Y. Chin J Process Eng. 2006; 6: 522 (郑淑国, 朱苗勇. 过程工程学报, 2006; 6: 522) [18] Xiao X G. Metallurgical Reaction Engineering. Shenyang: Northeastern University Press. 1989: 72 (肖兴国. 冶金反应工程学.沈阳: 东北大学出版社. 1989: 72)
[1] PENG Zhiqiang, LIU Qian, GUO Dongwei, ZENG Zihang, CAO Jianghai, HOU Zibing. Independent Change Law of Mold Heat Transfer in Continuous Casting Based on Big Data Mining[J]. 金属学报, 2023, 59(10): 1389-1400.
[2] GUO Dongwei, GUO Kunhui, ZHANG Fuli, ZHANG Fei, CAO Jianghai, HOU Zibing. A New Method for CET Position Determination of Continuous Casting Billet Based on the Variation Characteristics of Secondary Dendrite Arm Spacing[J]. 金属学报, 2022, 58(6): 827-836.
[3] LIU Zhongqiu, LI Baokuan, XIAO Lijun, GAN Yong. Modeling Progress of High-Temperature Melt Multiphase Flow in Continuous Casting Mold[J]. 金属学报, 2022, 58(10): 1236-1252.
[4] GUO Zhongao, PENG Zhiqiang, LIU Qian, HOU Zibing. Nonuniformity of Carbon Element Distribution of Large Area in High Carbon Steel Continuous Casting Billet[J]. 金属学报, 2021, 57(12): 1595-1606.
[5] TANG Haiyan, LIU Jinwen, WANG Kaimin, XIAO Hong, LI Aiwu, ZHANG Jiaquan. Progress and Perspective of Functioned Continuous Casting Tundish Through Heating and Temperature Control[J]. 金属学报, 2021, 57(10): 1229-1245.
[6] CAI Laiqiang, WANG Xudong, YAO Man, LIU Yu. Meshless Method for Non-Uniform Heat Transfer/Solidification Behavior of Continuous Casting Round Billet[J]. 金属学报, 2020, 56(8): 1165-1174.
[7] REN Zhongming,LEI Zuosheng,LI Chuanjun,XUAN Weidong,ZHONG Yunbo,LI Xi. New Study and Development on Electromagnetic Field Technology in Metallurgical Processes[J]. 金属学报, 2020, 56(4): 583-600.
[8] LI Yaqiang, LIU Jianhua, DENG Zhenqiang, QIU Shengtao, ZHANG Pei, ZHENG Guiyun. Peritectic Solidification Characteristics and Mechanism of 15CrMoG Steel[J]. 金属学报, 2020, 56(10): 1335-1342.
[9] Chunlei WU,Dewei LI,Xiaowei ZHU,Qiang WANG. Influence of Electromagnetic Swirling Flow in Nozzle on Solidification Structure and Macrosegregation of Continuous Casting Square Billet[J]. 金属学报, 2019, 55(7): 875-884.
[10] GUO Junli, WEN Guanghua, FU Jiaojiao, TANG Ping, HOU Zibing, GU Shaopeng. Influence of Cooling Rate on the Contraction of Peritectic Transformation During Solidification of Peritectic Steels[J]. 金属学报, 2019, 55(10): 1311-1318.
[11] Zibing HOU, Rui XU, Yi CHANG, Jianghai CAO, Guanghua WEN, Ping TANG. Time-Series Fluctuation Characteristics of Segregation Carbon Element Distribution Along Casting Direction in High Carbon Continuous Casting Billet[J]. 金属学报, 2018, 54(6): 851-858.
[12] Xinhua LIU, Huadong FU, Xingqun HE, Xintong FU, Yanqing JIANG, Jianxin XIE. Numerical Simulation Analysis of Continuous Casting Cladding Forming for Cu-Al Composites[J]. 金属学报, 2018, 54(3): 470-484.
[13] Miaoyong ZHU, Wentao LOU, Weiling WANG. Research Progress of Numerical Simulation in Steelmaking and Continuous Casting Processes[J]. 金属学报, 2018, 54(2): 131-150.
[14] Qiang WANG, Ming HE, Xiaowei ZHU, Xianliang LI, Chunlei WU, Shulin DONG, Tie LIU. Study and Development on Numerical Simulation for Application of Electromagnetic Field Technologyin Metallurgical Processes[J]. 金属学报, 2018, 54(2): 228-246.
[15] Wen YANG,Lifeng ZHANG,Ying REN,Haojian DUAN,Ying ZHANG,Xianghui XIAO. QUANTITATIVE 3D CHARACTERIZATION ON OXIDE INCLUSIONS IN SLAB OF Ti BEARING FERRITIC STAINLESS STEEL USING HIGH RESOLUTION SYNCHROTRON MICRO-CT[J]. 金属学报, 2016, 52(2): 217-223.
No Suggested Reading articles found!