Please wait a minute...
Acta Metall Sin  2016, Vol. 52 Issue (11): 1484-1490    DOI: 10.11900/0412.1961.2016.00047
Orginal Article Current Issue | Archive | Adv Search |
ESTABLISHMENT OF A FULL SCALE TUNDISH PHYSICAL SIMULATION PLATFORM AND APPLICATION RESEARCH
Jun HUANG1,2,Yongjie ZHANG3(),Baofeng WANG2,Yakun ZHANG2,Xin YE2,Shikai ZHOU2,4
1 School of Metallurgy, Northeastern University, Shenyang 110819, China
2 School of Energy and Environment, Inner Mongolia University of Science and Technology, Baotou 014010, China
3 Baosteel Research Institute, Shanghai 201900, China
4 China National Heavy Machinery Research Institute Co., Ltd., Xi'an 710032, China
Cite this article: 

Jun HUANG,Yongjie ZHANG,Baofeng WANG,Yakun ZHANG,Xin YE,Shikai ZHOU. ESTABLISHMENT OF A FULL SCALE TUNDISH PHYSICAL SIMULATION PLATFORM AND APPLICATION RESEARCH. Acta Metall Sin, 2016, 52(11): 1484-1490.

Download:  HTML  PDF(1347KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The importance of proper melt flow in continuous casting tundish for production of clean steel was well recognized, more in-depth research melt flow by physical models can promote tundish metallurgy effect and improve the quality of liquid steel. Based on the requirements of Re number and Fr number similar on the same time in the continuous casting water simulation, a synthetical hydraulic simulation platform of continuous casting was established. Flow characteristics with velocity field, vorticity field, RTD in extra thick slab tundish were got by the platform using NI image processing and PIV. The results showed that flow in the tundish had larger turbulent eddies, which formed a similar "funnel" vortex structure in inlet section of the tundish. Flow brought two big circulations in the exit section because of the channel and had a great impact on the side walls. RTD with noncontact measurement was coincident with the results of numerical simulation, longer residence time and larger dead volume showed the necessity of heating for the tundish.

Key words:  tundish,      full      scale,      velocity      measurement,      vorticity,      residence      time      distribution      (RTD)     
Received:  28 January 2016     
Fund: Supported by China National Heavy Machinery Research Institute Co., Ltd.

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2016.00047     OR     https://www.ams.org.cn/EN/Y2016/V52/I11/1484

Fig.1  Schematic (a) and equipment (b) of the experimental platform for continuous casting
Fig.2  Schematic of the tundish
Fig.3  Location schematic of velocity measure
Fig.4  Vorticity and velocity diagram in the tundish of section A at casting speed of 0.15 m/min
Fig.5  Velocity fields of section B (a, b) and section C (c, d) at casting speed of 0.15 m/min (a, c) and 0.20 m/min (b, d)
Fig.6  3D streamlines in the tundish with simulation at casting speed of 0.15 m/min
Fig.7  Residence time distribution (RTD) curves for the tundish at casting speed of 0.15 m/min
[1] Wang J J, Bao Y P, Q Y. Tundish Metallurgy. Beijing: Metallurgy Industry Press, 2001: 18
[1] (王建军, 包燕平, 曲英. 中间包冶金学. 北京: 冶金工业出版社, 2001: 18)
[2] Mazumdar D.Trans Indian Inst Met, 2013; 66: 597
[3] Jha P K, Rao P S, Dewan A.ISIJ Int, 2008; 48: 154
[4] Zhang L F, Zhi J J, Mou J N, Cui J.J Iron Steel Res Int, 2005; 12: 20
[5] Zhong L C, Hao R C, Li J Z, Zhu Y X.J Iron Steel Res Int, 2014; 21: 10
[6] Braun A, Warzecha M, Pfeifer H.Metall Mater Trans, 2010; 41B: 549
[7] Sahai Y.J Iron Steel Res Int, 2008; 15: 643
[8] Solorio-Diaz G, Ramos-Banderas A, Barreto J D, Morales R D.Steel Res Int, 2007; 78: 248
[9] Alkishriwi N, Meinke M, Schroder W, Braun A, Pfeifer H. Steel Res Int, 2006; 77: 565
[10] Sahai Y, Emi T.Tundish Technology for Clean Steel Production. Hackensack, NJ: World Scientific, 2008: 129
[11] Chattopadhyay K, Isac M, Guthrie R I L.Ironmak Steelmak, 2011; 38: 398
[12] Kumar A, Koria S C, Mazumdar D.ISIJ Int, 2007; 47: 1618
[13] Chen D F, Xie X, Long M J, Zhang M, Zhang L L, Liao Q.Metall Mater Trans, 2014; 45B: 392
[14] Koitzsch R, Odenthal H J, Pfeifer H.Steel Res Int, 2007; 78: 473
[15] Merder T, Saternus M, Warzecha M, Warzecha P.Metallurgija, 2014; 53: 323
[16] Merder T, Pieprzyca J, Saternus M.Metallurgija, 2014; 53: 155
[17] Warzecha M, Merder T, Pfeifer H, Pieprzyca J. Steel Res Int, 2010; 81: 987
[18] Cwudzinski A.Metall Res Technol, 2014; 111: 45
[19] Damle C, Sahai Y.ISIJ Int, 1995; 35: 163
[20] Ding N, Bao Y P, Sun Q S, Wang L F.Int J Min Met Mater, 2011; 18: 292
[21] Mishra S K, Jha P K, Sharma S C, Ajmani S K.Int J Min Met Mater, 2011; 18: 535
[22] Odenthal H J, Bolling R, Pfeifer H.Steel Res Int, 2003; 74: 44
[23] Singh V, Ajmani S K, Pal A R, Singh S K, Denys M B.Ironmak Steelmak, 2012; 39: 171
[24] Cwudzinski A, Jowsa J.Acta Metall Mater, 2008; 53: 749
[25] Merder T.Metallurgija, 2013; 52: 161
[26] Wang Q, Li B K, Tsukihashi F. ISIJ Int, 2014; 54: 311
[27] Cwudzinski A.Can Metall Quart, 2010; 49: 63
[28] Warzecha M, Merder T.Metallurgija, 2013; 52: 153
[1] LI Shilei, LI Yang, WANG Youkang, WANG Shengjie, HE Lunhua, SUN Guang'ai, XIAO Tiqiao, WANG Yandong. Multiscale Residual Stress Evaluation of Engineering Materials/Components Based on Neutron and Synchrotron Radiation Technology[J]. 金属学报, 2023, 59(8): 1001-1014.
[2] SI Yongli, XUE Jintao, WANG Xingfu, LIANG Juhua, SHI Zimu, HAN Fusheng. Effect of Cr Addition on the Corrosion Behavior of Twinning-Induced Plasticity Steel[J]. 金属学报, 2023, 59(7): 905-914.
[3] SHAO Xiaohong, PENG Zhenzhen, JIN Qianqian, MA Xiuliang. Unravelling the {101¯2} Twin Intersection Between LPSO Structure/SFs in Magnesium Alloy[J]. 金属学报, 2023, 59(4): 556-566.
[4] MA Zongyi, XIAO Bolv, ZHANG Junfan, ZHU Shize, WANG Dong. Overview of Research and Development for Aluminum Matrix Composites Driven by Aerospace Equipment Demand[J]. 金属学报, 2023, 59(4): 457-466.
[5] ZHANG Zhidong. Exact Solution of Ferromagnetic Three-Dimensional (3D) Ising Model and Spontaneous Emerge of Time[J]. 金属学报, 2023, 59(4): 489-501.
[6] XU Wenguo, HAO Wenjiang, LI Yingju, ZHAO Qingbin, LU Bingyu, GUO Heyi, LIU Tianyu, FENG Xiaohui, YANG Yuansheng. Effects of Trace Aluminum and Titanium on High Temper-ature Oxidation Behavior of Inconel 690 Alloy[J]. 金属学报, 2023, 59(12): 1547-1558.
[7] GAO Han, LIU Li, ZHOU Xiaoyu, ZHOU Xinyi, CAI Wenjun, ZHOU Hongling. Preparation and Bioactivity of Micro-Nano Structure on Ti6Al4V Surface[J]. 金属学报, 2023, 59(11): 1466-1474.
[8] ZHOU Lijun, WEI Song, GUO Jingdong, SUN Fangyuan, WANG Xinwei, TANG Dawei. Investigations on the Thermal Conductivity of Micro-Scale Cu-Sn Intermetallic Compounds Using Femtosecond Laser Time-Domain Thermoreflectance System[J]. 金属学报, 2022, 58(12): 1645-1654.
[9] LIU Zhongqiu, LI Baokuan, XIAO Lijun, GAN Yong. Modeling Progress of High-Temperature Melt Multiphase Flow in Continuous Casting Mold[J]. 金属学报, 2022, 58(10): 1236-1252.
[10] WANG Guanjie, LI Kaiqi, PENG Liyu, ZHANG Yiming, ZHOU Jian, SUN Zhimei. High-Throughput Automatic Integrated Material Calculations and Data Management Intelligent Platform and the Application in Novel Alloys[J]. 金属学报, 2022, 58(1): 75-88.
[11] ZHAO Naiqin, GUO Siyuan, ZHANG Xiang, HE Chunnian, SHI Chunsheng. Progress on Graphene/Copper Composites Focusing on Reinforcement Configuration Design: A Review[J]. 金属学报, 2021, 57(9): 1087-1106.
[12] LAN Liangyun, KONG Xiangwei, QIU Chunlin, DU Linxiu. A Review of Recent Advance on Hydrogen Embrittlement Phenomenon Based on Multiscale Mechanical Experiments[J]. 金属学报, 2021, 57(7): 845-859.
[13] HE Changshu, QIE Mofan, ZHANG Zhiqiang, ZHAO Xiang. Effect of Axial Ultrasonic Vibration on Metal Flow Behavior During Friction Stir Welding[J]. 金属学报, 2021, 57(12): 1614-1626.
[14] ZHU Min, OUYANG Liuzhang. Kinetics Tuning and Electrochemical Performance of Mg-Based Hydrogen Storage Alloys[J]. 金属学报, 2021, 57(11): 1416-1428.
[15] XU Junfeng, ZHANG Baodong, Peter K Galenko. Model of Eutectic Transformation Involving Intermetallic Compound[J]. 金属学报, 2021, 57(10): 1320-1332.
No Suggested Reading articles found!