Please wait a minute...
Acta Metall Sin  2011, Vol. 47 Issue (7): 831-838    DOI: 10.3724/SP.J.1037.2011.00300
论文 Current Issue | Archive | Adv Search |
ANALYSES OF SURFACE OXIDE FILMS ON ELECTROPOLISHED ALLOY 690TT AFTER IMMERSION FOR DIFFERENT TIMES
ZHANG Zhiming, WANG Jianqiu, HAN En-Hou, KE Wei
State Key Laboratory for Corrosion and Protection, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016
Cite this article: 

ZHANG Zhiming WANG Jianqiu HAN En-Hou KE Wei. ANALYSES OF SURFACE OXIDE FILMS ON ELECTROPOLISHED ALLOY 690TT AFTER IMMERSION FOR DIFFERENT TIMES. Acta Metall Sin, 2011, 47(7): 831-838.

Download:  PDF(1624KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  The corrosion of Ni base alloys in high temperature and high pressure water is affected by samples surface statuses. The morphologies and structures of surface oxide films grown on electropolished (EP) alloy 690TT after immersion in the simulated hydrogenated primary water of pressured water reactors (PWRs) for different times were analyzed by AFM, SEM, TEM, EDS and XPS. After immersion for 15 and 35 h, the EP alloy 690TT samples were covered with columnar oxides. With the increase of the immersion time, the sample surfaces were covered with scattered big oxide particles and loose needle-like oxides. Regardless of the immersion time, the formed oxide films are composed of spinel oxides and metallic Ni. After immersion for 720, 1440 and 2160 h, the oxide films are composed of three layers: the outmost layer is the separated big oxide particles which are rich in Fe and Ni; the intermediate layer is the loose needle--like oxides rich in Ni; the inner layer is the continuous and compact Cr oxides. The peak decomposition of the XPS revealed that the Cr oxides in the inner layer are probably Cr2O3. Only the inner layer in the oxide film could restrain the outward diffusion of metal atoms and also the inward diffusion of the oxygen atoms and then played the role of barrier layer well. Electropolishing treatment disadvantaged the fast growth of protective oxide film on alloy 690TT in the studied solution. The average corrosion rate of the inner layer does not decrease gradually with increasing the immersion time. After immersion for 2160 h, the oxide film still could not protect the matrix from further corrosion.
Key words:  Ni base alloy 690TT      eletropolishing treatment      immersion time      oxide film      protective structure     
Received:  12 May 2011     
Fund: 

Supported by National Basic Research Program of China (No.2011CB610502) and National Natural Science Foundation of China (No. 51025104)

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2011.00300     OR     https://www.ams.org.cn/EN/Y2011/V47/I7/831

[1] Chinese Academic of Engineering. Study of the National Development Strategy on Medium– and Long–Term Program for Energy: Electrical Power, Oil and Gas, Nuclear Power and Environment. Beijing: Science Press, 2011: 218

(中国工程院. 中国能源中长期(2030, 2050)发展战略研究: 电力?油气?核能?环境卷. 北京: 科学出版社, 2011: 218)

[2] Staehle R W. International Seminar on Materials Problems in Light Water Nuclear Power Plants: Status, Mitigation, Future Problems, Suzhou: Institute of Metal Research, Chinese Academy of Sciences, Suzhou Nuclear Power Research Institute, the Second Research and Design Institute of Nuclear Industry, Feb 20–23, 2005

[3] Sun H. PhD Thesis, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 2010

(孙华. 中国科学院金属研究所博士学位论文, 沈阳, 2010)

[4] Staehle R W, Gorman J A. Corrosion, 2003; 59: 931

[5] Han E H, Wang J Q, Wu X Q, Ke W. Acta Metall Sin, 2010; 46: 1379

(韩恩厚, 王俭秋, 吴欣强, 柯 伟. 金属学报, 2010; 46: 1379)

[6] Lee S J, Lai J J. J Mater Process Technol, 2003; 140: 206

[7] Ziemniak S E, Hanson M, Sander P C. Corros Sci, 2008; 50: 2465

[8] Robertson J. Corros Sci, 1991; 32: 443

[9] Ding X S. Nucl Power Eng Technol, 2000; 13(4): 37

(丁训慎. 核电工程与技术, 2000; 13(4): 37)

[10] Terachi T, Totsuka N, Yamada T, Nakagawa T, Deguchi H, Horiuchi M, Oshitani M. J Nucl Sci Technol, 2003; 40: 509

[11] Ziemniak S E, Hanson M. Corros Sci, 2006; 48: 498

[12] Ziemniak S E, Hanson M. Corros Sci, 2002; 44: 2209

[13] Zhang Z M, Wang J Q, Han E H, Ke W. Acta Metall Sin, 2011; 47: 823

(张志明, 王俭秋, 韩恩厚, 柯伟. 金属学报, 2011; 47: 823)

[14] Hermas A A. Corros Sci, 2008; 50: 2498

[15] Stefanov P, Stoychev D, Stoycheva M, Marinova T. Mater Chem Phys, 2000; 65: 212

[16] Sun H, Wu X Q, Han E H. Corros Sci, 2009; 51: 2840

[17] McIntype N S, Rummery T E, Cook M G, Owen D. J Electrochem Soc, 1976; 123: 1164

[18] Machet A, Galtayries A, Zanna S, Klein L, Maurice V, Jolivet P, Foucault M, Combrade P, Scott P, Marcus P. Electrochim Acta, 2004; 49: 3957

[19] McIntype N S, Zetaruk D G, Owen D. J Electrochem Soc, 1979; 126: 750

[20] Carette F, Lafont M C, Chatainier G, Guinard L, Pieraggi B. Surf Interface Anal, 2002; 34: 135

[21] Machet A, Galtayries A, Marcus P, Combrade P, Jolivet P, Scott P. Surf Interface Anal, 2002; 34: 197

[22] Sun M C, Wu X Q, Zhang Z E, Han E H. J Supercrit Fluids, 2008; 47: 309

[23] Panter J, Viguier B, Clou´e J M, Foucault M, Combrade P, Andrieu E. J Nucl Mater, 2006; 348: 213

[24] Zhang Z M, Wang J Q, Han E H, Ke W. Corros Sci, 2011, submitted

[25] Zhang Z M, Wang J Q, Han E H, Ke W. Corros Sci, 2011, accepted

[26] Li M S. High Temperature Corrosion of Metals. Beijing: Metallurgical Industry Press, 2001: 162

(李美栓. 金属的高温腐蚀. 北京: 机械工业出版社, 2001: 162)

[27] Marchetti L, Perrin S, Raquet O, Pijolat M. Mater Sci Forum, 2008; 595–598: 529

[28] Lister D H, Davidson R D, Mcalpine E. Corros Sci, 1987; 27: 113

[29] Zhang Z M, Wang J Q, Han E H, Ke W. J Mater Sci Technol, 2011, accepted
[1] SI Yongli, XUE Jintao, WANG Xingfu, LIANG Juhua, SHI Zimu, HAN Fusheng. Effect of Cr Addition on the Corrosion Behavior of Twinning-Induced Plasticity Steel[J]. 金属学报, 2023, 59(7): 905-914.
[2] SHEN Zhao, WANG Zhipeng, HU Bo, LI Dejiang, ZENG Xiaoqin, DING Wenjiang. Research Progress on the Mechanisms Controlling High-Temperature Oxidation Resistance of Mg Alloys[J]. 金属学报, 2023, 59(3): 371-386.
[3] LIU Laidi, DING Biao, REN Weili, ZHONG Yunbo, WANG Hui, WANG Qiuliang. Multilayer Structure of DZ445 Ni-Based Superalloy Formed by Long Time Oxidation at High Temperature[J]. 金属学报, 2023, 59(3): 387-398.
[4] SUN Rongrong, YAO Meiyi, LIN Xiaodong, ZHANG Wenhuai, QIU Yunlong, HU Lijuan, XIE Yaoping, YANG Jian, DONG Jianxin, CHENG Guoguang. Effect of Ti on the Corrosion Behavior of Fe22Cr5Al3Mo Alloy in 500oC Superheated Steam[J]. 金属学报, 2022, 58(5): 610-622.
[5] LIN Xiaodong, MA Haibin, REN Qisen, SUN Rongrong, ZHANG Wenhuai, HU Lijuan, LIANG Xue, LI Yifeng, YAO Meiyi. Corrosion Behaviors of Fe13Cr5Al4Mo Alloy in High-Temperature High-Pressure Water Environments[J]. 金属学报, 2022, 58(12): 1611-1622.
[6] QIAN Yue,SUN Rongrong,ZHANG Wenhuai,YAO Meiyi,ZHANG Jinlong,ZHOU Bangxin,QIU Yunlong,YANG Jian,CHENG Guoguang,DONG Jianxin. Effect of Nb on Microstructure and Corrosion Resistance of Fe22Cr5Al3Mo Alloy[J]. 金属学报, 2020, 56(3): 321-332.
[7] Xiaoyi ZHANG, Hailong SHANG, Bingyang MA, Rongbin LI, Geyang LI. Brazing of Coated Al Foil Filler to AlN Ceramic[J]. 金属学报, 2018, 54(4): 575-580.
[8] Zhongbo YANG,Wenjin ZHAO,Zhuqing CHENG,Jun QIU,Hai ZHANG,Hong ZHUO. Effect of Nb Content on the Corrosion Resistance of Zr-xNb-0.4Sn-0.3Fe Alloys[J]. 金属学报, 2017, 53(1): 47-56.
[9] Jiazhen WANG,Jianqiu WANG,En-Hou HAN. CORROSION BEHAVIOR OF ALLOY 800 IN NaOH AND ETA SOLUTIONS AT 300 ℃[J]. 金属学报, 2016, 52(5): 599-606.
[10] Meiqiong OU,Yang LIU,Xiangdong ZHA,Yingche MA,Leming CHENG,Kui LIU. CORROSION BEHAVIOR OF A NEW NICKEL BASE ALLOY IN SUPERCRITICAL WATERCONTAINING DIVERSE IONS[J]. 金属学报, 2016, 52(12): 1557-1564.
[11] Jianqiu WANG, Fa HUANG, Wei KE. CORROSION BEHAVIORS OF INCONEL 690TT AND INCOLOY 800MA STEAM GENERATOR TUBES IN HIGH TEMPERATURE HIGH PRESSURE WATER[J]. 金属学报, 2016, 52(10): 1333-1344.
[12] ZHANG Zhiming, WANG Jianqiu, HAN En-Hou, KE Wei. ANALYSIS OF SURFACE OXIDE FILM FORMED ON ELETROPOLISHED ALLOY 690TT IN HIGH TEMPERATURE AND HIGH PRESSURE WATER WITH SEQUENTIALLY DISSOLVED HYDROGEN AND OXYGEN[J]. 金属学报, 2015, 51(1): 85-92.
[13] ZHANG Haixia, LI Zhongkui, ZHOU Lian, XU Bingshe, WANG Yongzhen. EFFECTS OF STRUCTURE AND INTERNAL STRESSES IN OXIDE FILMS ON CORROSION MECHANISM OF NEW ZIRCONIUM ALLOY[J]. 金属学报, 2014, 50(12): 1529-1537.
[14] LIU Xiahe, WU Xinqiang, HAN En-hou. EFFECTS OF TEMPERATURE ON LECTROCHEMICAL CORROSION OF DOMESTIC NUCLEAR-GRADE 316L STAINLESS STEEL IN Zn-INJECTED AQUEOUS ENVIRONMENT[J]. 金属学报, 2014, 50(1): 64-70.
[15] WEI Tianguo, LONG Chongsheng, MIAO Zhi, LIU Yunming,LUAN Baifeng. CORROSION BEHAVIOR OF Zr-0.4Fe-1.0Cr-x Mo ALLOYS IN 500℃ and 10.3 MPa STEAM[J]. 金属学报, 2013, 49(6): 717-724.
No Suggested Reading articles found!