Synergetic Effects of Al and Cr on Enhancing Water Vapor Oxidation Resistance of Ultra-High Strength Steels for Nuclear Applications
PENG Xiangyang1, ZHANG Le2, LI Congcong2, HOU Shuo1, LIU Di2, ZHOU Jianming1, LU Guangyao1(), JIANG Suihe2()
1Equipment Research Center, China Nuclear Power Technology Research Institute Co. Ltd., Shenzhen 518000, China 2State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083, China
Cite this article:
PENG Xiangyang, ZHANG Le, LI Congcong, HOU Shuo, LIU Di, ZHOU Jianming, LU Guangyao, JIANG Suihe. Synergetic Effects of Al and Cr on Enhancing Water Vapor Oxidation Resistance of Ultra-High Strength Steels for Nuclear Applications. Acta Metall Sin, 2024, 60(3): 357-366.
Heat-resistant steels that usually form a typical Cr2O3 protective scale easily fail under the servicing environment of high-temperature and -pressure water vapor in a light water reactor. Advanced materials with a superior combination of high-temperature water vapor oxidation resistance, excellent mechanical properties, and radiation resistance must be developed. This work develops a new ultra-high strength maraging stainless steel by alloying different Cr contents into a recently developed Fe-Ni-Al ultrahigh strength steel without losing its high mechanical properties. The oxidation properties of the new martensitic steel are tested in both dry air and water vapor atmospheres. The alloy ingot is prepared by arc melting under argon atmosphere. The oxidation resistance of steel after aging treatment is tested in dry air and humid air at 600oC. The surface and cross-section morphologies of the oxidized samples are then characterized. The results show that the average weight gain per unit area of the Fe-13Ni-2.3Al high-strength steel added with 9%Cr (mass fraction) is only 0.1 mg/cm2 after 100 h oxidation at 600oC in a 10% water vapor atmosphere. It decreases more than 50 times compared with those of the Fe-13Ni-2.3Al high-strength steel and the Fe-18Ni-3Al maraging steel added with 5%Cr. The microstructure characterization of the oxidized high-strength steel reveals that a composite oxide film rich in Fe, Cr, and Al spontaneously forms on the surface of the Fe-13Ni-9Cr-2.3Al high-strength steel in the 600oC air + 10% water vapor atmosphere due to the synergistical effect of the Al and Cr additions. The oxygen partial pressure at the interface between the oxide film and the matrix is reduced by the third component effect of Cr, which promotes the formation of a dense and continuous Al-rich oxide film on the substrate surface in a high-temperature water vapor atmosphere.
Table 1 Nominal compositions of the Fe-Ni-Cr-Al martensitic steels
Fig.1 SEM images of 5Cr (a) and 9Cr (b) samples aged at 500oC for 4 h before oxidation experiments, corresponding XRD spectra (c), and tensile stress-strain curves at room temperature (RT) and 600oC (d)
Temperature
Sample
Tensile strength MPa
Yield strength MPa
Elongation %
RT
5Cr
1889
1773
6.5
9Cr
1890
1777
7.6
600oC
5Cr
576
510
51.1
9Cr
572
523
45.1
Table 2 Mechanical properties of 5Cr and 9Cr samples aged at 500oC for 4 h before oxidation experiments at RT and 600oC
Fig.2 Mass changes of 5Cr, 9Cr, and 0Cr samples after isothermal oxidation experiments at 600oC dry air (a) and 600oC air + 10% water vapor (b) for 100 h, mass changes of cycle oxidation experiment at 600oC air + 10% water vapor (c) and their surface morphologies (d)
Fig.3 Cross-sectional SEM images (left) and EDS results (right) of 5Cr (a), 9Cr (b), and 0Cr (c) samples after isothermal oxidation experiments at 600oC dry air for 100 h
Fig.4 Cross-sectional SEM images (left) and EDS results (right) of 5Cr (a), 9Cr (b), and 0Cr (c) samples after isothermal oxidation experiments at 600oC air + 10% water vapor for 100 h
Fig.5 Cross-sectional morphology, composition distributions and structural analyses of 9Cr sample and its oxide film after isothermal oxidation at 600oC air + 10% water vapor for 100 h (a) bright field TEM image (b) dark field TEM image and EDS results (c) EDS line scanning result along the arrow in Fig.5b (d) HRTEM image (e) inverse Fourier transforms (FFTs) of zones F1 and F2 in Fig.5d (f) GIXRD spectrum of 9Cr sample
Fig.6 Schematics of initial oxidation behavior of 9Cr (a) and 5Cr (b) samples
1
Zinkle S J, Busby J T. Structural materials for fission & fusion energy [J]. Mater. Today., 2009, 12(11): 12
2
Zinkle S J, Snead L L. Designing radiation resistance in materials for fusion energy [J]. Annu. Rev. Mater. Res., 2014, 44: 241
doi: 10.1146/matsci.2014.44.issue-1
3
Laverde D, Gómez-Acebo T, Castro F. Continuous and cyclic oxidation of T91 ferritic steel under steam [J]. Corros. Sci., 2004, 46: 613
doi: 10.1016/S0010-938X(03)00173-2
4
Chen Y, Sridharan K, Allen T. Corrosion behavior of ferritic-martensitic steel T91 in supercritical water [J]. Corros. Sci., 2006, 48: 2843
doi: 10.1016/j.corsci.2005.08.021
5
Ampornrat P, Was G S. Oxidation of ferritic-martensitic alloys T91, HCM12A and HT-9 in supercritical water [J]. J. Nucl. Mater., 2007, 371: 1
doi: 10.1016/j.jnucmat.2007.05.023
6
Jiang S H, Wang H, Wu Y, et al. Ultrastrong steel via minimal lattice misfit and high-density nanoprecipitation [J]. Nature, 2017, 544: 460
doi: 10.1038/nature22032
7
Jiang S H, Xu X Q, Li W, et al. Strain hardening mediated by coherent nanoprecipitates in ultrahigh-strength steels [J]. Acta Mater., 2021, 213: 116984
doi: 10.1016/j.actamat.2021.116984
8
Cao P P, Wang H, He J Y, et al. Effects of nanosized precipitates on irradiation behavior of CoCrFeNi high entropy alloys [J]. J. Alloys Compd., 2021, 859: 158291
doi: 10.1016/j.jallcom.2020.158291
9
Du J L, Jiang S H, Cao P P, et al. Superior radiation tolerance via reversible disordering-ordering transition of coherent superlattices [J]. Nat. Mater., 2023, 22: 443
10
Figueroa D, Robinson M J. The effects of sacrificial coatings on hydrogen embrittlement and re-embrittlement of ultra high strength steels [J]. Corros. Sci., 2008, 50: 1066
doi: 10.1016/j.corsci.2007.11.023
11
Wang Z H, Niu B, Wang Q, et al. Designing ultrastrong maraging stainless steels with improved uniform plastic strain via controlled precipitation of coherent nanoparticles [J]. J. Mater. Sci. Technol., 2021, 93: 60
doi: 10.1016/j.jmst.2021.04.011
12
Liu Q X, Pang M, Chen J, et al. Microstructure and properties characterization of Ti-containing Ni60/Graphite self-lubricating composite coatings applied on 300M ultra-high strength steel by laser cladding [J]. Mater. Chem. Phys., 2021, 266: 124554
doi: 10.1016/j.matchemphys.2021.124554
13
Xu X Q, Zhang X F, Sun X Y, et al. Effects of silicon additions on the oxide scale formation of an alumina-forming austenitic alloy [J]. Corros. Sci., 2012, 65: 317
doi: 10.1016/j.corsci.2012.08.039
14
Stott F H, Wood G C, Stringer J. The influence of alloying elements on the development and maintenance of protective scales [J]. Oxid. Met., 1995, 44: 113
doi: 10.1007/BF01046725
15
Jozaghi T, Wang C N, Arroyave R, et al. Design of alumina-forming austenitic stainless steel using genetic algorithms [J]. Mater. Des., 2020, 186: 108198
doi: 10.1016/j.matdes.2019.108198
16
Gesmundo F, Viani F. Transition from internal to external oxidation for binary alloys in the presence of an outer scale [J]. Oxid. Met., 1986, 25: 269
doi: 10.1007/BF01072908
17
Prescott R, Graham M J. The formation of aluminum oxide scales on high-temperature alloys [J]. Oxid. Met., 1992, 38: 233
doi: 10.1007/BF00666913
18
Niu Y, Zhang X J, Wu Y, et al. The third-element effect in the oxidation of Ni-xCr-7Al (x = 0, 5, 10, 15 at.%) alloys in 1atm O2 at 900-1000oC [J]. Corros. Sci., 2006, 48: 4020
doi: 10.1016/j.corsci.2006.03.008
19
Liu F, Götlind H, Svensson J E, et al. Early stages of the oxidation of a FeCrAlRE alloy (Kanthal AF) at 900oC: A detailed microstructural investigation [J]. Corros. Sci., 2008, 50: 2272
doi: 10.1016/j.corsci.2008.05.019
20
Hayashi S, Maeda T. Effect of Zr on initial oxidation behavior of FeCrAl alloys [J]. Oxid. Met., 2020, 93: 573
doi: 10.1007/s11085-020-09972-9
21
Shi H, Tang C C, Jianu A, et al. Oxidation behavior and microstructure evolution of alumina-forming austenitic & high entropy alloys in steam environment at 1200oC [J]. Corros. Sci., 2020, 170: 108654
doi: 10.1016/j.corsci.2020.108654
22
Wu J W, Liu X B. Recent development of SOFC metallic interconnect [J]. J. Mater. Sci. Technol., 2010, 26: 293
23
Zhou L F, Zeng Z P, Brady M P, et al. Chromium evaporation and oxidation characteristics of alumina-forming austenitic stainless steels for balance of plant applications in solid oxide fuel cells [J]. Int. J. Hydrogen Energy, 2021, 46: 21619
doi: 10.1016/j.ijhydene.2021.04.002
24
Asteman H, Svensson J E, Norell M, et al. Influence of water vapor and flow rate on the high-temperature oxidation of 304L; Effect of chromium oxide hydroxide evaporation [J]. Oxid. Met., 2000, 54: 11
doi: 10.1023/A:1004642310974
25
Yamamoto Y, Brady M P, Lu Z P, et al. Creep-resistant, Al2O3-forming austenitic stainless steels [J]. Science., 2007, 316: 433
pmid: 17446398
26
Li C C, Zhao W X, Wang H, et al. Enhanced corrosion resistance of an alumina-forming austenitic steel against molten Al [J]. Oxid. Met., 2020, 94: 465
doi: 10.1007/s11085-020-10002-x
27
Mortazavi N, Geers C, Esmaily M, et al. Interplay of water and reactive elements in oxidation of alumina-forming alloys [J]. Nat. Mater., 2018, 17: 610
doi: 10.1038/s41563-018-0105-6
pmid: 29891892