|
|
Synergetic Effects of Al and Cr on Enhancing Water Vapor Oxidation Resistance of Ultra-High Strength Steels for Nuclear Applications |
PENG Xiangyang1, ZHANG Le2, LI Congcong2, HOU Shuo1, LIU Di2, ZHOU Jianming1, LU Guangyao1( ), JIANG Suihe2( ) |
1Equipment Research Center, China Nuclear Power Technology Research Institute Co. Ltd., Shenzhen 518000, China 2State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083, China |
|
Cite this article:
PENG Xiangyang, ZHANG Le, LI Congcong, HOU Shuo, LIU Di, ZHOU Jianming, LU Guangyao, JIANG Suihe. Synergetic Effects of Al and Cr on Enhancing Water Vapor Oxidation Resistance of Ultra-High Strength Steels for Nuclear Applications. Acta Metall Sin, 2024, 60(3): 357-366.
|
Abstract Heat-resistant steels that usually form a typical Cr2O3 protective scale easily fail under the servicing environment of high-temperature and -pressure water vapor in a light water reactor. Advanced materials with a superior combination of high-temperature water vapor oxidation resistance, excellent mechanical properties, and radiation resistance must be developed. This work develops a new ultra-high strength maraging stainless steel by alloying different Cr contents into a recently developed Fe-Ni-Al ultrahigh strength steel without losing its high mechanical properties. The oxidation properties of the new martensitic steel are tested in both dry air and water vapor atmospheres. The alloy ingot is prepared by arc melting under argon atmosphere. The oxidation resistance of steel after aging treatment is tested in dry air and humid air at 600oC. The surface and cross-section morphologies of the oxidized samples are then characterized. The results show that the average weight gain per unit area of the Fe-13Ni-2.3Al high-strength steel added with 9%Cr (mass fraction) is only 0.1 mg/cm2 after 100 h oxidation at 600oC in a 10% water vapor atmosphere. It decreases more than 50 times compared with those of the Fe-13Ni-2.3Al high-strength steel and the Fe-18Ni-3Al maraging steel added with 5%Cr. The microstructure characterization of the oxidized high-strength steel reveals that a composite oxide film rich in Fe, Cr, and Al spontaneously forms on the surface of the Fe-13Ni-9Cr-2.3Al high-strength steel in the 600oC air + 10% water vapor atmosphere due to the synergistical effect of the Al and Cr additions. The oxygen partial pressure at the interface between the oxide film and the matrix is reduced by the third component effect of Cr, which promotes the formation of a dense and continuous Al-rich oxide film on the substrate surface in a high-temperature water vapor atmosphere.
|
Received: 16 September 2022
|
|
Fund: National Natural Science Foundation of China(51971018);National Natural Science Foundation of China(U20B2025) |
Corresponding Authors:
LU Guangyao, senior engineer, Tel: 18566285086, E-mail: luguangyao@cgnpc.com.cn; JIANG Suihe, professor, Tel: 17710175186, E-mail: jiangsh@ustb.edu.cn
|
1 |
Zinkle S J, Busby J T. Structural materials for fission & fusion energy [J]. Mater. Today., 2009, 12(11): 12
|
2 |
Zinkle S J, Snead L L. Designing radiation resistance in materials for fusion energy [J]. Annu. Rev. Mater. Res., 2014, 44: 241
doi: 10.1146/matsci.2014.44.issue-1
|
3 |
Laverde D, Gómez-Acebo T, Castro F. Continuous and cyclic oxidation of T91 ferritic steel under steam [J]. Corros. Sci., 2004, 46: 613
doi: 10.1016/S0010-938X(03)00173-2
|
4 |
Chen Y, Sridharan K, Allen T. Corrosion behavior of ferritic-martensitic steel T91 in supercritical water [J]. Corros. Sci., 2006, 48: 2843
doi: 10.1016/j.corsci.2005.08.021
|
5 |
Ampornrat P, Was G S. Oxidation of ferritic-martensitic alloys T91, HCM12A and HT-9 in supercritical water [J]. J. Nucl. Mater., 2007, 371: 1
doi: 10.1016/j.jnucmat.2007.05.023
|
6 |
Jiang S H, Wang H, Wu Y, et al. Ultrastrong steel via minimal lattice misfit and high-density nanoprecipitation [J]. Nature, 2017, 544: 460
doi: 10.1038/nature22032
|
7 |
Jiang S H, Xu X Q, Li W, et al. Strain hardening mediated by coherent nanoprecipitates in ultrahigh-strength steels [J]. Acta Mater., 2021, 213: 116984
doi: 10.1016/j.actamat.2021.116984
|
8 |
Cao P P, Wang H, He J Y, et al. Effects of nanosized precipitates on irradiation behavior of CoCrFeNi high entropy alloys [J]. J. Alloys Compd., 2021, 859: 158291
doi: 10.1016/j.jallcom.2020.158291
|
9 |
Du J L, Jiang S H, Cao P P, et al. Superior radiation tolerance via reversible disordering-ordering transition of coherent superlattices [J]. Nat. Mater., 2023, 22: 443
|
10 |
Figueroa D, Robinson M J. The effects of sacrificial coatings on hydrogen embrittlement and re-embrittlement of ultra high strength steels [J]. Corros. Sci., 2008, 50: 1066
doi: 10.1016/j.corsci.2007.11.023
|
11 |
Wang Z H, Niu B, Wang Q, et al. Designing ultrastrong maraging stainless steels with improved uniform plastic strain via controlled precipitation of coherent nanoparticles [J]. J. Mater. Sci. Technol., 2021, 93: 60
doi: 10.1016/j.jmst.2021.04.011
|
12 |
Liu Q X, Pang M, Chen J, et al. Microstructure and properties characterization of Ti-containing Ni60/Graphite self-lubricating composite coatings applied on 300M ultra-high strength steel by laser cladding [J]. Mater. Chem. Phys., 2021, 266: 124554
doi: 10.1016/j.matchemphys.2021.124554
|
13 |
Xu X Q, Zhang X F, Sun X Y, et al. Effects of silicon additions on the oxide scale formation of an alumina-forming austenitic alloy [J]. Corros. Sci., 2012, 65: 317
doi: 10.1016/j.corsci.2012.08.039
|
14 |
Stott F H, Wood G C, Stringer J. The influence of alloying elements on the development and maintenance of protective scales [J]. Oxid. Met., 1995, 44: 113
doi: 10.1007/BF01046725
|
15 |
Jozaghi T, Wang C N, Arroyave R, et al. Design of alumina-forming austenitic stainless steel using genetic algorithms [J]. Mater. Des., 2020, 186: 108198
doi: 10.1016/j.matdes.2019.108198
|
16 |
Gesmundo F, Viani F. Transition from internal to external oxidation for binary alloys in the presence of an outer scale [J]. Oxid. Met., 1986, 25: 269
doi: 10.1007/BF01072908
|
17 |
Prescott R, Graham M J. The formation of aluminum oxide scales on high-temperature alloys [J]. Oxid. Met., 1992, 38: 233
doi: 10.1007/BF00666913
|
18 |
Niu Y, Zhang X J, Wu Y, et al. The third-element effect in the oxidation of Ni-xCr-7Al (x = 0, 5, 10, 15 at.%) alloys in 1atm O2 at 900-1000oC [J]. Corros. Sci., 2006, 48: 4020
doi: 10.1016/j.corsci.2006.03.008
|
19 |
Liu F, Götlind H, Svensson J E, et al. Early stages of the oxidation of a FeCrAlRE alloy (Kanthal AF) at 900oC: A detailed microstructural investigation [J]. Corros. Sci., 2008, 50: 2272
doi: 10.1016/j.corsci.2008.05.019
|
20 |
Hayashi S, Maeda T. Effect of Zr on initial oxidation behavior of FeCrAl alloys [J]. Oxid. Met., 2020, 93: 573
doi: 10.1007/s11085-020-09972-9
|
21 |
Shi H, Tang C C, Jianu A, et al. Oxidation behavior and microstructure evolution of alumina-forming austenitic & high entropy alloys in steam environment at 1200oC [J]. Corros. Sci., 2020, 170: 108654
doi: 10.1016/j.corsci.2020.108654
|
22 |
Wu J W, Liu X B. Recent development of SOFC metallic interconnect [J]. J. Mater. Sci. Technol., 2010, 26: 293
|
23 |
Zhou L F, Zeng Z P, Brady M P, et al. Chromium evaporation and oxidation characteristics of alumina-forming austenitic stainless steels for balance of plant applications in solid oxide fuel cells [J]. Int. J. Hydrogen Energy, 2021, 46: 21619
doi: 10.1016/j.ijhydene.2021.04.002
|
24 |
Asteman H, Svensson J E, Norell M, et al. Influence of water vapor and flow rate on the high-temperature oxidation of 304L; Effect of chromium oxide hydroxide evaporation [J]. Oxid. Met., 2000, 54: 11
doi: 10.1023/A:1004642310974
|
25 |
Yamamoto Y, Brady M P, Lu Z P, et al. Creep-resistant, Al2O3-forming austenitic stainless steels [J]. Science., 2007, 316: 433
pmid: 17446398
|
26 |
Li C C, Zhao W X, Wang H, et al. Enhanced corrosion resistance of an alumina-forming austenitic steel against molten Al [J]. Oxid. Met., 2020, 94: 465
doi: 10.1007/s11085-020-10002-x
|
27 |
Mortazavi N, Geers C, Esmaily M, et al. Interplay of water and reactive elements in oxidation of alumina-forming alloys [J]. Nat. Mater., 2018, 17: 610
doi: 10.1038/s41563-018-0105-6
pmid: 29891892
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|