|
|
Design and Integration of Flexible and Stretchable Micro-Thermoelectric Devices |
LIU Rui1,2, YU Zhi2, ZHAO Yang2, LI Xiaoqi2, YU Hailong2, HE Juan2, NIE Pengcheng2, WANG Chunyu2, TAI Kaiping2,3( ), LIU Chang2( ) |
1College of Science, Shenyang University of Chemical Technology, Shenyang 110142, China 2Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China 3Liaoning Professional Technology Innovation Center for Integrated Circuit Thermal Management, Liaoning Lengxin Semiconductor Technology Co. Ltd., Shenyang 110172, China |
|
Cite this article:
LIU Rui, YU Zhi, ZHAO Yang, LI Xiaoqi, YU Hailong, HE Juan, NIE Pengcheng, WANG Chunyu, TAI Kaiping, LIU Chang. Design and Integration of Flexible and Stretchable Micro-Thermoelectric Devices. Acta Metall Sin, 2024, 60(3): 348-356.
|
Abstract A miniature flexible thermoelectric generator with a stretchable three-dimensional (3D) arch structure is designed using polydimethylsiloxane (PDMS) as a substrate and the excellent thermoelectric properties and flexibility of single-wall carbon nanotube (SWCNT)/Bi2Te3 thermoelectric hybrid film. The device fully utilizes optimal in-plane thermoelectric performance direction of the film material and obtains electro-thermal conversion through temperature differences between the inside and outside of the device plane. Therefore, thermoelectric potential is generated at both ends of the electrode to achieve power generation. When the temperature difference was 4 K, the output voltage is 4.8 mV, the maximum output power is 2.6 × 10-9 W, the power density is 3.9 × 10-9 W/cm2, and the minimum bending radius of the device can reach 3 mm. The fabrication process for this miniature flexible thermoelectric device is simple, feasible, and low-cost, providing a new avenue for developing flexible thermoelectric thin-film power generation devices.
|
Received: 17 April 2022
|
|
Fund: National Natural Science Foundation of China(52073290);National Natural Science Foundation of China(51927803);Science Fund for Distinguished Young Scholars of Liaoning Province(2023JH6/100500004);Natural Science Foundation of Liaoning Province(2022-MS-011);Shenyang Science and Technology Plan Project(23-407-3-23) |
Corresponding Authors:
TAI Kaiping, professor, Tel: 18640320728, E-mail: kptai@imr.ac.cn; LIU Chang, professor, Tel: 18640219199, E-mail: cliu@imr.ac.cn
|
1 |
Zhou Q, Zhu K, Li J, et al. Leaf‐inspired flexible thermoelectric generators with high temperature difference utilization ratio and output power in ambient air [J]. Adv. Sci., 2021, 8: 2004947
doi: 10.1002/advs.v8.12
|
2 |
He R, Schierning G, Nielsch K. Thermoelectric devices: A review of devices, architectures, and contact optimization [J]. Adv. Mater. Technol., 2018, 3: 1700256
doi: 10.1002/admt.v3.4
|
3 |
Shi X L, Zou J, Chen Z G. Advanced thermoelectric design: From materials and structures to devices [J]. Chem. Rev., 2020, 120: 7399
doi: 10.1021/acs.chemrev.0c00026
|
4 |
Tan G J, Zhao L D, Kanatzidis M G. Rationally designing high-performance bulk thermoelectric materials [J]. Chem. Rev., 2016, 116: 12123
pmid: 27580481
|
5 |
Li Y, Qiao J X, Zhao Y, et al. A flexible thermoelectric device based on a Bi2Te3-carbon nanotube hybrid [J]. J. Mater. Sci. Technol., 2020, 58: 80
doi: 10.1016/j.jmst.2020.03.066
|
6 |
Yadav A, Pipe K P, Shtein M. Fiber-based flexible thermoelectric power generator [J]. J. Power Sources, 2008, 175: 909
doi: 10.1016/j.jpowsour.2007.09.096
|
7 |
Du Y, Xu J Y, Paul B, et al. Flexible thermoelectric materials and devices [J]. Appl. Mater. Today, 2018, 12: 366
|
8 |
Zhao Y. Investigation of CNTs-Bi2Te3 hybrid thermoelectric thin film materials and devices [D]. Hefei: University of Science and Technology of China (Institute of Metal Research, Chinese Academy of Sciences), 2021
|
|
赵 洋. 碳纳米管-碲化铋复合热电薄膜材料与器件的制备和性能研究 [D]. 合肥: 中国科学技术大学(中国科学院金属研究所), 2021
|
9 |
Li Y. Investigation on the thermoelectric performance of flexible Bi2Te3/SWCNT hybrids and devices [D]. Hefei: University of Science and Technology of China (Institute of Metal Research, Chinese Academy of Sciences), 2020
|
|
李 颖. 柔性Bi2Te3/SWCNT复合热电薄膜材料及器件性能研究 [D]. 合肥: 中国科学技术大学(中国科学院金属研究所), 2020
|
10 |
Madan D, Wang Z Q, Wright P K, et al. Printed flexible thermoelectric generators for use on low levels of waste heat [J]. Appl. Energy, 2015, 156: 587
doi: 10.1016/j.apenergy.2015.07.066
|
11 |
Jo S E, Kim M K, Kim M S, et al. Flexible thermoelectric generator for human body heat energy harvesting [J]. Electron. Lett., 2012, 48: 1015
doi: 10.1049/el.2012.1566
|
12 |
Jin Q, Jiang S, Zhao Y, et al. Flexible layer-structured Bi2Te3 thermoelectric on a carbon nanotube scaffold [J]. Nat. Mater., 2019, 18: 62
doi: 10.1038/s41563-018-0217-z
|
13 |
Pichanusakorn P, Bandaru P. Nanostructured thermoelectrics [J]. Mater. Sci. Eng., 2010, R67: 19
|
14 |
Wang Y L, Zhu W, Deng Y, et al. Self-powered wearable pressure sensing system for continuous healthcare monitoring enabled by flexible thin-film thermoelectric generator [J]. Nano Energy, 2020, 73: 104773
doi: 10.1016/j.nanoen.2020.104773
|
15 |
Wang Y, Yang L, Shi X L, et al. Flexible thermoelectric materials and generators: Challenges and innovations [J]. Adv. Mater., 2019, 31: 1807916
doi: 10.1002/adma.v31.29
|
16 |
Park S H, Jo S, Kwon B, et al. High-performance shape-engineerable thermoelectric painting [J]. Nat. Commun., 2016, 7: 13403
doi: 10.1038/ncomms13403
pmid: 27834369
|
17 |
Zhou W W, Zhu J X, Li D, et al. Binary‐phased nanoparticles for enhanced thermoelectric properties [J]. Adv. Mater., 2009, 21: 3196
doi: 10.1002/adma.v21:31
|
18 |
Bahk J H, Fang H Y, Yazawa K, et al. Flexible thermoelectric materials and device optimization for wearable energy harvesting [J]. J. Mater. Chem., 2015, 3C: 10362
|
19 |
Kim C S, Lee G S, Choi H, et al. Structural design of a flexible thermoelectric power generator for wearable applications [J]. Appl. Energy, 2018, 214: 131
doi: 10.1016/j.apenergy.2018.01.074
|
20 |
Zhu P C, Shi C Q, Wang Y L, et al. Recyclable, healable, and stretchable high-power thermoelectric generator [J]. Adv. Energy Mater., 2021, 11: 2100920
doi: 10.1002/aenm.v11.25
|
21 |
Zhang L, Shi X L, Yang Y L, et al. Flexible thermoelectric materials and devices: From materials to applications [J]. Mater. Today, 2021, 46: 62
doi: 10.1016/j.mattod.2021.02.016
|
22 |
Beretta D, Perego A, Lanzani G, et al. Organic flexible thermoelectric generators: From modeling, a roadmap towards applications [J]. Sustainable Energy Fuels, 2017, 1: 174
doi: 10.1039/C6SE00028B
|
23 |
Wang X, Shi Y Q, Ding L M. To enhance the performance of n-type organic thermoelectric materials [J]. J. Semicond., 2022, 43: 020202
|
24 |
Zhang Q, Sun Y M, Xu W, et al. Organic thermoelectric materials: Emerging green energy materials converting heat to electricity directly and efficiently [J]. Adv. Mater., 2014, 26: 6829
doi: 10.1002/adma.v26.40
|
25 |
Guo Z P, Yu Y D, Zhu W, et al. Kirigami-based stretchable, deformable, ultralight thin-film thermoelectric generator for BodyNET application [J]. Adv. Energy Mater., 2022, 12: 2102993
doi: 10.1002/aenm.v12.5
|
26 |
Na J, Kim Y, Park T, et al. Preparation of bismuth telluride films with high thermoelectric power factor [J]. ACS Appl. Mater. Interfaces, 2016, 8: 32392
doi: 10.1021/acsami.6b10188
|
27 |
Rojas J P, Conchouso D, Arevalo A, et al. Paper-based origami flexible and foldable thermoelectric nanogenerator [J]. Nano Energy, 2017, 31: 296
doi: 10.1016/j.nanoen.2016.11.012
|
28 |
Ryan J D, Lund A, Hofmann A I, et al. All-organic textile thermoelectrics with carbon-nanotube-coated n-type yarns [J]. ACS Appl. Energy Mater., 2018, 1: 2934
doi: 10.1021/acsaem.8b00617
pmid: 29963656
|
29 |
Jung M, Jeon S, Bae J. Scalable and facile synthesis of stretchable thermoelectric fabric for wearable self-powered temperature sensors [J]. RSC Adv., 2018, 8: 39992
doi: 10.1039/C8RA06664G
|
30 |
Dong X Y, Xiong S X, Luo B W, et al. Flexible and transparent organic-inorganic hybrid thermoelectric modules [J]. ACS Appl. Mater. Interfaces, 2018, 10: 26687
doi: 10.1021/acsami.8b08696
|
31 |
Li X, Cai K F, Gao M Y, et al. Recent advances in flexible thermoelectric films and devices [J]. Nano Energy, 2021, 89: 106309
doi: 10.1016/j.nanoen.2021.106309
|
32 |
Liu C, Cheng H M. Controlled growth of semiconducting and metallic single-wall carbon nanotubes [J]. J. Am. Chem. Soc., 2016, 138: 6690
doi: 10.1021/jacs.6b00838
pmid: 27149629
|
33 |
Ge R, Dong X Y, Sun L L, et al. Meters-long, sewable, wearable conductive polymer wires for thermoelectric applications [J]. J. Mater. Chem., 2020, 8C: 1571
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|