Please wait a minute...
Acta Metall Sin  2024, Vol. 60 Issue (3): 348-356    DOI: 10.11900/0412.1961.2022.00171
Research paper Current Issue | Archive | Adv Search |
Design and Integration of Flexible and Stretchable Micro-Thermoelectric Devices
LIU Rui1,2, YU Zhi2, ZHAO Yang2, LI Xiaoqi2, YU Hailong2, HE Juan2, NIE Pengcheng2, WANG Chunyu2, TAI Kaiping2,3(), LIU Chang2()
1College of Science, Shenyang University of Chemical Technology, Shenyang 110142, China
2Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
3Liaoning Professional Technology Innovation Center for Integrated Circuit Thermal Management, Liaoning Lengxin Semiconductor Technology Co. Ltd., Shenyang 110172, China
Cite this article: 

LIU Rui, YU Zhi, ZHAO Yang, LI Xiaoqi, YU Hailong, HE Juan, NIE Pengcheng, WANG Chunyu, TAI Kaiping, LIU Chang. Design and Integration of Flexible and Stretchable Micro-Thermoelectric Devices. Acta Metall Sin, 2024, 60(3): 348-356.

Download:  HTML  PDF(2122KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

A miniature flexible thermoelectric generator with a stretchable three-dimensional (3D) arch structure is designed using polydimethylsiloxane (PDMS) as a substrate and the excellent thermoelectric properties and flexibility of single-wall carbon nanotube (SWCNT)/Bi2Te3 thermoelectric hybrid film. The device fully utilizes optimal in-plane thermoelectric performance direction of the film material and obtains electro-thermal conversion through temperature differences between the inside and outside of the device plane. Therefore, thermoelectric potential is generated at both ends of the electrode to achieve power generation. When the temperature difference was 4 K, the output voltage is 4.8 mV, the maximum output power is 2.6 × 10-9 W, the power density is 3.9 × 10-9 W/cm2, and the minimum bending radius of the device can reach 3 mm. The fabrication process for this miniature flexible thermoelectric device is simple, feasible, and low-cost, providing a new avenue for developing flexible thermoelectric thin-film power generation devices.

Key words:  SWCNT/Bi2Te3 thermoelectric hybrid film      stretchable and deformable      flexible thermoelectric device     
Received:  17 April 2022     
ZTFLH:  TB383.2  
Fund: National Natural Science Foundation of China(52073290);National Natural Science Foundation of China(51927803);Science Fund for Distinguished Young Scholars of Liaoning Province(2023JH6/100500004);Natural Science Foundation of Liaoning Province(2022-MS-011);Shenyang Science and Technology Plan Project(23-407-3-23)
Corresponding Authors:  TAI Kaiping, professor, Tel: 18640320728, E-mail: kptai@imr.ac.cn; LIU Chang, professor, Tel: 18640219199, E-mail: cliu@imr.ac.cn

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2022.00171     OR     https://www.ams.org.cn/EN/Y2024/V60/I3/348

Fig.1  Design diagrams of the thin-film thermoelectric device (a) and the 3D arch thermoelectric thin-film device (PDMS—polydimethylsiloxane, SWCNT—single-wall carbon nanotube) (b)
Fig.2  Flow chart of the fabrication of micro-flexible thermoelectric devices
(a) preparation of PDMS flexible substrate (b) transfer thermoelectric films
(c) deposition of gold electrodes (d) three-dimensional thermal electric generator (TEG) device
Fig.3  Schematics of the fabrication of stretchable and deformable arch PDMS substrate (a1-a6) cross-sectional flow charts of arch PDMS substrate fabrication (a1) stretch PDMS (a2) attach sacrificial layer metal foil(a3) pouring, scraping, and curing PDMS (a4) attach support sheet metal(a5) pouring, scraping, and curing PDMS again (a6) erosion of sacrificial metal flakes (b1, b2) patterned metal zinc flakes for sacrificial metal layer (b1) and supporting metal layer (b2) (c) stretchable deformable arch PDMS substrate
Fig.4  Flexible, stretchable, and deformable micro thermoelectric power generation device
Fig.5  XRD spectra of SWCNT/Bi2Te3 composite film (a) and SWCNT/Sb1.5Bi0.5Te3 composite film (b)
Fig.6  SEM images of SWCNT/Bi2Te3 composite film with deposition time of 3600 s (a) and SWCNT/Sb1.5Bi0.5Te3 composite film with deposition time of 2100 s (b)
Fig.7  Thermoelectric properties of n-type SWCNT/Bi2Te3 composite film (a, c, e) and p-type SWCNT/Sb1.5Bi0.5Te3 composite film (b, d, f) (a, b) Seebeck coefficient (α) (c, d) electrical conductivity (σ) (e, f) power factor (α2σ)
Fig.8  Schematic of the test of the miniature flexible thermoelectric device
Fig.9  Power generation performances of the micro-flexible thermoelectric device
(a) output voltage generated by the micro-flexible thermoelectric device at different temperature differences (ΔT)
(b) changes of power generation performance during the stretching process of the device (Insets show schematic of the tensile deformation of the device and the physical picture of the device under the maximum tensile amount (L / L0 = 1.6),where L0 and L are the lengths of the micro-flexible thermoelectric device before and after stretching, respectively; R0 and R are the resistances of the micro-flexible thermoelectric device before and after stretching, respectively)
(c) normalized output voltages of the devices were compared to several literature data[26,28,29,33]
(d) curves of the output voltage (hollow symbols) and output power (solid symbols) of the micro-flexible thermoelectric device at different ΔT as a function of the output current
Fig.10  Flexibility test charts of the micro flexible thermoelectric device
(a) schematic side view of the device during bend testing (r—bending radius)
(b) flexible demonstration of the device attached to glassware with a radius of 3 mm
(c) graph of the relative change in R / R0 of the device at different bending radii
1 Zhou Q, Zhu K, Li J, et al. Leaf‐inspired flexible thermoelectric generators with high temperature difference utilization ratio and output power in ambient air [J]. Adv. Sci., 2021, 8: 2004947
doi: 10.1002/advs.v8.12
2 He R, Schierning G, Nielsch K. Thermoelectric devices: A review of devices, architectures, and contact optimization [J]. Adv. Mater. Technol., 2018, 3: 1700256
doi: 10.1002/admt.v3.4
3 Shi X L, Zou J, Chen Z G. Advanced thermoelectric design: From materials and structures to devices [J]. Chem. Rev., 2020, 120: 7399
doi: 10.1021/acs.chemrev.0c00026
4 Tan G J, Zhao L D, Kanatzidis M G. Rationally designing high-performance bulk thermoelectric materials [J]. Chem. Rev., 2016, 116: 12123
pmid: 27580481
5 Li Y, Qiao J X, Zhao Y, et al. A flexible thermoelectric device based on a Bi2Te3-carbon nanotube hybrid [J]. J. Mater. Sci. Technol., 2020, 58: 80
doi: 10.1016/j.jmst.2020.03.066
6 Yadav A, Pipe K P, Shtein M. Fiber-based flexible thermoelectric power generator [J]. J. Power Sources, 2008, 175: 909
doi: 10.1016/j.jpowsour.2007.09.096
7 Du Y, Xu J Y, Paul B, et al. Flexible thermoelectric materials and devices [J]. Appl. Mater. Today, 2018, 12: 366
8 Zhao Y. Investigation of CNTs-Bi2Te3 hybrid thermoelectric thin film materials and devices [D]. Hefei: University of Science and Technology of China (Institute of Metal Research, Chinese Academy of Sciences), 2021
赵 洋. 碳纳米管-碲化铋复合热电薄膜材料与器件的制备和性能研究 [D]. 合肥: 中国科学技术大学(中国科学院金属研究所), 2021
9 Li Y. Investigation on the thermoelectric performance of flexible Bi2Te3/SWCNT hybrids and devices [D]. Hefei: University of Science and Technology of China (Institute of Metal Research, Chinese Academy of Sciences), 2020
李 颖. 柔性Bi2Te3/SWCNT复合热电薄膜材料及器件性能研究 [D]. 合肥: 中国科学技术大学(中国科学院金属研究所), 2020
10 Madan D, Wang Z Q, Wright P K, et al. Printed flexible thermoelectric generators for use on low levels of waste heat [J]. Appl. Energy, 2015, 156: 587
doi: 10.1016/j.apenergy.2015.07.066
11 Jo S E, Kim M K, Kim M S, et al. Flexible thermoelectric generator for human body heat energy harvesting [J]. Electron. Lett., 2012, 48: 1015
doi: 10.1049/el.2012.1566
12 Jin Q, Jiang S, Zhao Y, et al. Flexible layer-structured Bi2Te3 thermoelectric on a carbon nanotube scaffold [J]. Nat. Mater., 2019, 18: 62
doi: 10.1038/s41563-018-0217-z
13 Pichanusakorn P, Bandaru P. Nanostructured thermoelectrics [J]. Mater. Sci. Eng., 2010, R67: 19
14 Wang Y L, Zhu W, Deng Y, et al. Self-powered wearable pressure sensing system for continuous healthcare monitoring enabled by flexible thin-film thermoelectric generator [J]. Nano Energy, 2020, 73: 104773
doi: 10.1016/j.nanoen.2020.104773
15 Wang Y, Yang L, Shi X L, et al. Flexible thermoelectric materials and generators: Challenges and innovations [J]. Adv. Mater., 2019, 31: 1807916
doi: 10.1002/adma.v31.29
16 Park S H, Jo S, Kwon B, et al. High-performance shape-engineerable thermoelectric painting [J]. Nat. Commun., 2016, 7: 13403
doi: 10.1038/ncomms13403 pmid: 27834369
17 Zhou W W, Zhu J X, Li D, et al. Binary‐phased nanoparticles for enhanced thermoelectric properties [J]. Adv. Mater., 2009, 21: 3196
doi: 10.1002/adma.v21:31
18 Bahk J H, Fang H Y, Yazawa K, et al. Flexible thermoelectric materials and device optimization for wearable energy harvesting [J]. J. Mater. Chem., 2015, 3C: 10362
19 Kim C S, Lee G S, Choi H, et al. Structural design of a flexible thermoelectric power generator for wearable applications [J]. Appl. Energy, 2018, 214: 131
doi: 10.1016/j.apenergy.2018.01.074
20 Zhu P C, Shi C Q, Wang Y L, et al. Recyclable, healable, and stretchable high-power thermoelectric generator [J]. Adv. Energy Mater., 2021, 11: 2100920
doi: 10.1002/aenm.v11.25
21 Zhang L, Shi X L, Yang Y L, et al. Flexible thermoelectric materials and devices: From materials to applications [J]. Mater. Today, 2021, 46: 62
doi: 10.1016/j.mattod.2021.02.016
22 Beretta D, Perego A, Lanzani G, et al. Organic flexible thermoelectric generators: From modeling, a roadmap towards applications [J]. Sustainable Energy Fuels, 2017, 1: 174
doi: 10.1039/C6SE00028B
23 Wang X, Shi Y Q, Ding L M. To enhance the performance of n-type organic thermoelectric materials [J]. J. Semicond., 2022, 43: 020202
24 Zhang Q, Sun Y M, Xu W, et al. Organic thermoelectric materials: Emerging green energy materials converting heat to electricity directly and efficiently [J]. Adv. Mater., 2014, 26: 6829
doi: 10.1002/adma.v26.40
25 Guo Z P, Yu Y D, Zhu W, et al. Kirigami-based stretchable, deformable, ultralight thin-film thermoelectric generator for BodyNET application [J]. Adv. Energy Mater., 2022, 12: 2102993
doi: 10.1002/aenm.v12.5
26 Na J, Kim Y, Park T, et al. Preparation of bismuth telluride films with high thermoelectric power factor [J]. ACS Appl. Mater. Interfaces, 2016, 8: 32392
doi: 10.1021/acsami.6b10188
27 Rojas J P, Conchouso D, Arevalo A, et al. Paper-based origami flexible and foldable thermoelectric nanogenerator [J]. Nano Energy, 2017, 31: 296
doi: 10.1016/j.nanoen.2016.11.012
28 Ryan J D, Lund A, Hofmann A I, et al. All-organic textile thermoelectrics with carbon-nanotube-coated n-type yarns [J]. ACS Appl. Energy Mater., 2018, 1: 2934
doi: 10.1021/acsaem.8b00617 pmid: 29963656
29 Jung M, Jeon S, Bae J. Scalable and facile synthesis of stretchable thermoelectric fabric for wearable self-powered temperature sensors [J]. RSC Adv., 2018, 8: 39992
doi: 10.1039/C8RA06664G
30 Dong X Y, Xiong S X, Luo B W, et al. Flexible and transparent organic-inorganic hybrid thermoelectric modules [J]. ACS Appl. Mater. Interfaces, 2018, 10: 26687
doi: 10.1021/acsami.8b08696
31 Li X, Cai K F, Gao M Y, et al. Recent advances in flexible thermoelectric films and devices [J]. Nano Energy, 2021, 89: 106309
doi: 10.1016/j.nanoen.2021.106309
32 Liu C, Cheng H M. Controlled growth of semiconducting and metallic single-wall carbon nanotubes [J]. J. Am. Chem. Soc., 2016, 138: 6690
doi: 10.1021/jacs.6b00838 pmid: 27149629
33 Ge R, Dong X Y, Sun L L, et al. Meters-long, sewable, wearable conductive polymer wires for thermoelectric applications [J]. J. Mater. Chem., 2020, 8C: 1571
No related articles found!
No Suggested Reading articles found!