Please wait a minute...
Acta Metall Sin  2023, Vol. 59 Issue (2): 205-225    DOI: 10.11900/0412.1961.2022.00063
Overview Current Issue | Archive | Adv Search |
Research Progress of Additively Manufactured Magnesium Alloys: A Review
TANG Weineng1, MO Ning1, HOU Juan2()
1.Mg & Mg Alloy Research Institute, Technology Center, Baosteel Metal Co., Ltd., China Baowu Steel Group Corporation, Shanghai 200940, China
2.School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
Cite this article: 

TANG Weineng, MO Ning, HOU Juan. Research Progress of Additively Manufactured Magnesium Alloys: A Review. Acta Metall Sin, 2023, 59(2): 205-225.

Download:  HTML  PDF(6528KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Mg alloys are attractive in the fields of aerospace, automotive, and biomedical engineering, owing to the advantages of light weight, high specific strength, excellent damping property, good biocompatibility, and in vivo degradable property. However, conventional methods for manufacturing Mg alloys, such as casting and deformation processing, yield low-quality large-scale monolithic and complex structures, which hinder the applications of Mg parts. Additive manufacturing (AM) is a burgeoning alternative to manufacture monolithic parts through layer-by-layer deposition of metallic materials using 3D model data. In this paper, the latest research progress in AM of Mg alloys, which focuses on technological processes and influencing factors, macro and microstructures, mechanical properties, and corrosion properties of parts manufactured primarily by selective laser melting (SLM) and wire and arc AM (WAAM), are comprehensively reviewed. Currently, additively manufactured Mg parts with a relative density > 99% have been achievable through both SLM and WAAM after process optimization, and their mechanical properties and corrosion resistance have been comparable to those of casting and wrought parts, indicating a great potential for engineering applications. Finally, the future development trend and research direction of AM of Mg alloys are proposed from the perspectives of materials design, process improvement, and performance evaluation.

Key words:  magnesium alloy      additive manufacturing      selective laser melting      wire and arc additive manufacturing      microstructure      mechanical property     
Received:  17 February 2020     
ZTFLH:  TG146  
Fund: National Key Research and Development Program of China(2021YFB3701102);National Natural Science Foundation of China(52073176);Natural Science Foundation of Shanghai(22-ZR1443000)
About author:  HOU Juan, associate professor, Tel: 18217727686, E-mail: houjuanlife@yahoo.com

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2022.00063     OR     https://www.ams.org.cn/EN/Y2023/V59/I2/205

Fig.1  Illustration of the selective laser melting (SLM) process (a) and general scanning strategy used for SLMed magnesium alloys (b)
Fig.2  SEM images from WE43 samples produced with various laser powers (P) and scan rates (v) of SLM[23]
Fig.3  Process map for Mg-9%Al, results as function of the range of laser power and scan rate[35]
Fig.4  Evaporative fumes during the SLM process of Mg vapor (a) and macro cracks observed on the as built samples (b)[24]
MaterialLaser powerLayer thicknessHatch spacingScan rateRelative densityRef.
Wμmμmmm·s-1%
Mg903010010096.13[36]
AZ317550100125> 99.50[37]
AZ61150406040099.40[21]
Mg-9Al1550802082.00[35]
AZ91D200409033099.52[22]
AZ91D50303020098.10[38]
ZK605010010050097.40[39]
ZK6050208060098.00[40]
WE433003040120099.40[41]
WE431953020080099.60[42]
WE4320040130110099.70[23]
GZ112K803010030099.95[25]
GWZ1031K803010020097.85[24]
Table 1  Optimized processing parameters of SLM examined for Mg and Mg alloys in literatures[21-25,35-42]
Fig.5  Schematic of wire and arc additive manufacturing (WAAM)[44]
MethodRaw materialDeposition rateMaterialManufacturingManufacturingSubsequentApplicable
kg·h-1utilizationcostaccuracymachiningworkpiece
ratemm
SLMMg powder0.1-0.2 (low)10%-60%High0.05 (high)UnnecessaryComplex,
(low)small workpieces
WAAMMg filler> 2 (high)90% (high)Low0.2 (low)NecessaryGeneral,
wirelarge workpieces
Table 2  Comparison between SLM and WAAM[47]
Fig.6  Cross-section view and microstructures of the TIG-based WAAM AZ80M wall[53] (TIG—tungsten inert gas welding)
(a) overall microstructure (b) top arc zone
(c) interlayer transition region (d) intermediate zone (e) bottom zone
Fig.7  Effect of CMT characteristics on energy input process (a) and subsequent weld appearances (left) and weld geometries (right) (b-d) of the deposited weld beads (CMT—cold metal transfer, α—wetting angle)[54]
MethodAlloyWire feed rateTravel speedPeak currentDwell timeAr flow rateRef.
m·min-1mm·min-1AsL·min-1
TIGAZ312.00200136-20[50]
AZ610.82-130--[51]
AZ801.15300100-12016017-20[52,53]
MIG/CMTAZ31-60035018018[54]
AZ31-8001002025[44]
AZ611.8270689018[56]
AEX112.272051-14[57]
AZ91D12600-18015[55]
Table 3  Optimized WAAM process parameters of Mg alloys in literatures[44,50-57]
Fig.8  Schematics showing the principle of capillary-mediated binderless 3D printing (a-e) and macrograph of printed pure Mg parts (f)[67]
Fig.9  Electron backscatter diffraction images showing grain sizes of SLMed WE43 sample (a-c), powder extruded sample (d, e), and as-cast WE43 sample (f) (AM—additive manufacturing, PE—powder extruded)[70]
Fig.10  SEM images showing the cross section (a) and the vertical section (b) microstructures of the AZ91D sample built at 166.7 J/m3[22] (OLR—overlapping region, CST—center of scanning track)
Fig.11  SEM images showing microstructures of SLMed WE43 sample (a-c) in compared with as-cast WE43 sample (d-f)[70]
Fig.12  BSE (a-c) and TEM (d-f) images of microstructures of SLMed WE43 sample[42] (ppts—precipitates)
Fig.13  Cross-section microstructure of WAAM fabricated AZ31B sample (a), trends in as-measured grain size of fabricated object corresponding to torch feed speed (b), and OM images showing the top layer (c), central part (d), and boundary (e) of fabricated object with processing parameter of 100 A, 10 V, and F = 400 mm/min (HAZ—heat affected zone)[44]
Fig.14  OM images showing the interlayer microstructures of WAAM AZ31 component (a, b), and EBSD image corresponded to the area in Fig.14b (c)[54]
Fig.15  OM image showing the microstructure of AZ61 alloy fabricated by WAAM[51]
Fig.16  Summary chart showing the yield strength (a) and ultimate tensile strength (b) vs elongation to failure for Mg alloys manufactured by different methods (Data extracted from Refs.[21-25,51,52,54-57,76,77], LD—longitudinal direction, TD—transverse direction)
Fig.17  Electrochemical response of SLM WE43 alloys in compared with as-cast WE43 alloy[41]
(a) open circuit potential (E) of WE43 in the cast, as-SLMed, and SLM + HIP + HT conditions in 0.1 mol/L NaCl for up to 10 min (HIP—hot isostatic pressing, HT—heat treatment)
(b) potentiodynamic polarisation curves of the same specimens tested in Fig.17a following exposure to 0.1 mol/L NaCl for a conditioning period
(c) the quantitative data on corrosion potential (Ecorr) and corrosion current density (icorr) acquired from the potentiodynamic polarisation analysis (Fig.17b)
Fig.18  Schematic of hybrid deposition and micro rolling[102,103]
1 Ding W J, Zeng X Q. Research and applications of magnesium in China[J]. Acta Metall. Sin., 2010, 46: 1450
doi: 10.3724/SP.J.1037.2010.01450
丁文江, 曾小勤. 中国Mg材料研发与应用[J]. 金属学报, 2010, 46: 1450
doi: 10.3724/SP.J.1037.2010.00386
2 Pan F S, Jiang B. Development and application of plastic processing technologies of magnesium alloys[J]. Acta Metall. Sin., 2021, 57: 1362
doi: 10.11900/0412.1961.2021.00349
潘复生, 蒋 斌. 镁合金塑性加工技术发展及应用[J]. 金属学报, 2021, 57: 1362
doi: 10.11900/0412.1961.2021.00349
3 Li X L, Ma J X, Li P, et al. 3D printing technology and its application trend[J]. Process Auto. Instru., 2014, 35(1): 1
李小丽, 马剑雄, 李 萍 等. 3D打印技术及应用趋势[J]. 自动化仪表, 2014, 35(1): 1
4 Chi M. Numerical and experimental research of selective laser melting additive manufacturing for metal material[D]. Shanghai: East China University of Science and Technology, 2019
池 敏. 金属激光选区熔化增材制造数值模拟与实验研究[D]. 上海: 华东理工大学, 2019
5 Liu J S. Numerical simulation and machining emulation of selective laser sintering[D]. Nanchang: East China Jiaotong University, 2011
刘建书. 选择性激光烧结数值模拟与加工仿真[D]. 南昌: 华东交通大学, 2011
6 Frazier W E. Metal additive manufacturing: A review[J]. J. Mater. Eng. Perform., 2014, 23: 1917
doi: 10.1007/s11665-014-0958-z
7 Lu B H, Li D C. Development of the additive manufacturing (3D printing) technology[J]. Mach. Build. Auto., 2013, 42(4): 1
卢秉恒, 李涤尘. 增材制造(3D打印)技术发展[J]. 机械制造与自动化, 2013, 42(4): 1
8 Deng L F, Yan Y F. Research status and progress of biomaterials for bone repair and reconstruction[J]. Chin. J. Repar. Reconstr. Surg., 2018, 32: 815
邓廉夫, 燕宇飞. 骨修复材料的研究现状与进展[J]. 中国修复重建外科杂志, 2018, 32: 815
9 Zheng Y F, Xia D D, Shen Y N, et al. Additively manufactured biodegrabable metal implants[J]. Acta Metall. Sin., 2021, 57: 1499
doi: 10.11900/0412.1961.2021.00294
郑玉峰, 夏丹丹, 谌雨农 等. 增材制造可降解金属医用植入物[J]. 金属学报, 2021, 57: 1499
doi: 10.11900/0412.1961.2021.00294
10 Yuan G Y, Niu J L. Research progress of biodegradable magnesium alloys for orthopedic applications[J]. Acta Metall. Sin., 2017, 53: 1168
袁广银, 牛佳林. 可降解医用镁合金在骨修复应用中的研究进展[J]. 金属学报, 2017, 53: 1168
11 Zheng Y F, Yang H T. Research progress in biodegradable metals for stent application[J]. Acta Metall. Sin., 2017, 53: 1227
郑玉峰, 杨宏韬. 血管支架用可降解金属研究进展[J]. 金属学报, 2017, 53: 1227
doi: 10.11900/0412.1961.2017.00270
12 Qin Y, Wen P, Voshage M, et al. Additive manufacturing of biodegradable Zn-xWE43 porous scaffolds: Formation quality, microstructure and mechanical properties[J]. Mater. Des., 2019, 181: 107937
doi: 10.1016/j.matdes.2019.107937
13 Qin Y, Wen P, Guo H, et al. Additive manufacturing of biodegradable metals: Current research status and future perspectives[J]. Acta Biomater., 2019, 98: 3
doi: S1742-7061(19)30289-2 pmid: 31029830
14 Xiao Z F, Yang Y Q, Xiao R, et al. Evaluation of topology-optimized lattice structures manufactured via selective laser melting[J]. Mater. Des., 2018, 143: 27
doi: 10.1016/j.matdes.2018.01.023
15 Croteau J R, Griffiths S, Rossell M D, et al. Microstructure and mechanical properties of Al-Mg-Zr alloys processed by selective laser melting[J]. Acta Mater., 2018, 153: 35
doi: 10.1016/j.actamat.2018.04.053
16 Sing S L, An J, Yeong W Y, et al. Laser and electron-beam powder-bed additive manufacturing of metallic implants: A review on processes, materials and designs[J]. J. Orthop. Res., 2016, 34: 369
doi: 10.1002/jor.23075 pmid: 26488900
17 Liu C M, Liu Z J, Zhu X R, et al. Research and development progress of dynamic recrystallization in pure magnesium and its alloys[J]. Chin. J. Nonferrous Met., 2006, 16: 1
doi: 10.1016/S1003-6326(06)60001-0
刘楚明, 刘子娟, 朱秀荣 等. 镁及镁合金动态再结晶研究进展[J]. 中国有色金属学报, 2006, 16: 1
18 Zhang S C, Duan H Q, Cai Q Z, et al. Effects of the main alloying elements on microstructure and properties of magnesium alloys[J]. Foundry, 2001, 50: 310
张诗昌, 段汉桥, 蔡启舟 等. 主要合金元素对镁合金组织和性能的影响[J]. 铸造, 2001, 50: 310
19 Chen X Q, Liu J W, Luo C P. Research status and development trend of Mg-Zn alloys with high strength[J]. Mater. Rev., 2008, 22(5): 58
陈晓强, 刘江文, 罗承萍. 高强度Mg-Zn系合金的研究现状与发展趋势[J]. 材料导报, 2008, 22(5): 58
20 Liu S. Research on the process and properties of AZ61 magnesium alloy fabricated by selective laser melting[D]. Beijing: University of Science and Technology Beijing, 2020
刘 帅. AZ61镁合金选择性激光熔化工艺与性能研究[D]. 北京: 北京科技大学, 2020
21 Liu S, Yang W S, Shi X, et al. Influence of laser process parameters on the densification, microstructure, and mechanical properties of a selective laser melted AZ61 magnesium alloy[J]. J. Alloys Compd., 2019, 808: 151160
doi: 10.1016/j.jallcom.2019.06.261
22 Wei K W, Gao M, Wang Z M, et al. Effect of energy input on formability, microstructure and mechanical properties of selective laser melted AZ91D magnesium alloy[J]. Mater. Sci. Eng., 2014, A611: 212
23 Hyer H, Zhou L, Benson G, et al. Additive manufacturing of dense WE43 Mg alloy by laser powder bed fusion[J]. Addit. Manuf., 2020, 33: 101123
24 Deng Q C, Wu Y J, Wu Q Y, et al. Microstructure evolution and mechanical properties of a high-strength Mg-10Gd-3Y-1Zn-0.4Zr alloy fabricated by laser powder bed fusion[J]. Addit. Manuf., 2022, 49: 102517
25 Deng Q C, Wu Y J, Luo Y H, et al. Fabrication of high-strength Mg-Gd-Zn-Zr alloy via selective laser melting[J]. Mater. Charact., 2020, 165: 110377
doi: 10.1016/j.matchar.2020.110377
26 Hu G W. Research on processing and forming mechanism of ZK61 magnesium alloy by selective laser melting[D]. Wuhan: Huazhong University of Science and Technology, 2013
胡国文. 选区激光熔化成形ZK61镁合金的工艺与机理研究[D]. 武汉: 华中科技大学, 2013
27 Wu J J, Wang L Z. Selective laser melting manufactured CNTs/AZ31B composites: Heat transfer and vaporized porosity evolution[J]. J. Mater. Res., 2018, 33: 2752
doi: 10.1557/jmr.2018.224
28 Gu D D, Meiners W, Wissenbach K, et al. Laser additive manufacturing of metallic components: Materials, processes and mechanisms[J]. Int. Mater. Rev., 2012, 57: 133
doi: 10.1179/1743280411Y.0000000014
29 Olakanmi E O, Cochrane R F, Dalgarno K W. A review on selective laser sintering/melting (SLS/SLM) of aluminium alloy powders: Processing, microstructure, and properties[J]. Prog. Mater. Sci., 2015, 74: 401
doi: 10.1016/j.pmatsci.2015.03.002
30 Hu D, Wang Y, Zhang D F, et al. Experimental investigation on selective laser melting of bulk net-shape pure magnesium[J]. Mater. Manuf. Processes, 2015, 30: 1298
doi: 10.1080/10426914.2015.1025963
31 Liu C. Study on the forming technology, microstructure and properties of porous magnesium alloys produced by laser additive manufacturing[D]. Suzhou: Suzhou University, 2018
刘 畅. 激光增材制造多孔镁合金成形工艺及组织性能研究[D]. 苏州: 苏州大学, 2018
32 Shuai C J, Liu L, Zhao M C, et al. Microstructure, biodegradation, antibacterial and mechanical properties of ZK60-Cu alloys prepared by selective laser melting technique[J]. J. Mater. Sci. Technol., 2018, 34: 1944
doi: 10.1016/j.jmst.2018.02.006
33 Zhou H. Study on process and microstructure and properties of ZK61 magnesium alloy by selective laser melting[D]. Wuhan: Huazhong University of Science and Technology, 2019
周 华. 激光选区熔化成形ZK61镁合金工艺及组织性能研究[D]. 武汉: 华中科技大学, 2019
34 Liu C, Zhang M, Chen C J. Effect of laser processing parameters on porosity, microstructure and mechanical properties of porous Mg-Ca alloys produced by laser additive manufacturing[J]. Mater. Sci. Eng., 2017, A703: 359
35 Zhang B C, Liao H L, Coddet C. Effects of processing parameters on properties of selective laser melting Mg-9%Al powder mixture[J]. Mater. Des., 2012, 34: 753
doi: 10.1016/j.matdes.2011.06.061
36 Dong J, Tümer N, Leeflang M A, et al. Extrusion-based additive manufacturing of Mg-Zn alloy scaffolds[J]. J. Magnes. Alloy., 2022, 10: 2491
doi: 10.1016/j.jma.2021.11.018
37 Pawlak A, Szymczyk P E, Kurzynowski T, et al. Selective laser melting of magnesium AZ31B alloy powder[J]. Rapid Prototyping J., 2020, 26: 249
doi: 10.1108/RPJ-05-2019-0137
38 Niu X M, Shen H Y, Fu J Z, et al. Effective control of microstructure evolution in AZ91D magnesium alloy by SiC nanoparticles in laser powder-bed fusion[J]. Mater. Des., 2021, 206: 109787
doi: 10.1016/j.matdes.2021.109787
39 Shuai C J, Yang Y W, Wu P, et al. Laser rapid solidification improves corrosion behavior of Mg-Zn-Zr alloy[J]. J. Alloys Compd., 2017, 691: 961
doi: 10.1016/j.jallcom.2016.09.019
40 Wu C L, Zai W, Man H C. Additive manufacturing of ZK60 magnesium alloy by selective laser melting: Parameter optimization, microstructure and biodegradability[J]. Mater. Today Commun., 2021, 26: 101922
41 Esmaily M, Zeng Z, Mortazavi A N, et al. A detailed microstructural and corrosion analysis of magnesium alloy WE43 manufactured by selective laser melting[J]. Addit. Manuf., 2020, 35: 101321
42 Gangireddy S, Gwalani B, Liu K M, et al. Microstructure and mechanical behavior of an additive manufactured (AM) WE43-Mg alloy[J]. Addit. Manuf., 2019, 26: 53
doi: 10.1016/j.addma.2018.12.015
43 Zhang Z D, He S B, Wang Q P, et al. Research status of process method, additive solder and post-processing in arc additive manufacturing[J]. Elect. Weld. Machi., 2021, 51(8): 1
张兆栋, 何胜斌, 王奇鹏 等. 电弧增材制造工艺方法、增材焊料及后处理的研究现状[J]. 电焊机, 2021, 51(8): 1
44 Takagi H, Sasahara H, Abe T, et al. Material-property evaluation of magnesium alloys fabricated using wire-and-arc-based additive manufacturing[J]. Addit. Manuf., 2018, 24: 498
45 Madhuri N, Jayakumar V, Sathishkumar M. Recent developments and challenges accompanying with wire arc additive manufacturing of Mg alloys: A review[J]. Mater. Today Proceed., 2021, 46: 8573
46 Xu C J, Zhang K J, Ma D, et al. Development and application of arc additive manufacturing and magnesium alloy WAAM forming technology[J]. Foundry Technol., 2021, 42: 521
徐春杰, 张凯军, 马 东 等. 电弧增材及镁合金WAAM成形技术发展及应用[J]. 铸造技术, 2021, 42: 521
47 Liu J N, Xu Y L, Ge Y, et al. Wire and arc additive manufacturing of metal components: A review of recent research developments[J]. Int. J. Adv. Manuf. Technol., 2020, 111: 149
doi: 10.1007/s00170-020-05966-8
48 Li D C, He J K, Tian X Y, et al. Additive manufacturing: Integrated fabrication of macro/microstructures[J]. Chin. J. Mech. Eng., 2013, 49(6): 129
李涤尘, 贺健康, 田小永 等. 增材制造: 实现宏微结构一体化制造[J]. 机械工程学报, 2013, 49(6): 129
49 Xiong J T, Geng H B, Lin X, et al. Research status of wire and arc additive manufacture and its application in aeronautical manufacturing[J]. Aeronaut. Manuf. Technol., 2015, (23-24): 80
熊江涛, 耿海滨, 林 鑫 等. 电弧增材制造研究现状及在航空制造中应用前景[J]. 航空制造技术, 2015, (23-24): 80
50 Guo J, Zhou Y, Liu C M, et al. Wire arc additive manufacturing of AZ31 magnesium alloy: Grain refinement by adjusting pulse frequency[J]. Materials, 2016, 9: 823
doi: 10.3390/ma9100823
51 Ying T, Zhao Z X, Yan P F, et al. Effect of fabrication parameters on the microstructure and mechanical properties of wire arc additive manufactured AZ61 alloy[J]. Mater. Lett., 2022, 307: 131014
doi: 10.1016/j.matlet.2021.131014
52 Guo Y Y, Quan G F, Jiang Y L, et al. Formability, microstructure evolution and mechanical properties of wire arc additively manufactured AZ80M magnesium alloy using gas tungsten arc welding[J]. J. Magnes. Alloy., 2021, 9: 192
doi: 10.1016/j.jma.2020.01.003
53 Guo Y Y, Pan H H, Ren L B, et al. Microstructure and mechanical properties of wire arc additively manufactured AZ80M magnesium alloy[J]. Mater. Lett., 2019, 247: 4
doi: 10.1016/j.matlet.2019.03.063
54 Wang P, Zhang H Z, Zhu H, et al. Wire-arc additive manufacturing of AZ31 magnesium alloy fabricated by cold metal transfer heat source: Processing, microstructure, and mechanical behavior[J]. J. Mater. Process. Technol, 2021, 288: 116895
doi: 10.1016/j.jmatprotec.2020.116895
55 Bi J, Shen J Q, Hu S S, et al. Microstructure and mechanical properties of AZ91 Mg alloy fabricated by cold metal transfer additive manufacturing[J]. Mater. Lett., 2020, 276: 128185
doi: 10.1016/j.matlet.2020.128185
56 Klein T, Arnoldt A, Schnall M, et al. Microstructure formation and mechanical properties of a wire-arc additive manufactured magnesium alloy[J]. JOM, 2021, 73: 1126
doi: 10.1007/s11837-021-04567-4
57 Gneiger S, Österreicher J A, Arnoldt A R, et al. Development of a high strength magnesium alloy for wire arc additive manufacturing[J]. Metals, 2020, 10: 778
doi: 10.3390/met10060778
58 Ng C C, Savalani M M, Man H C, et al. Layer manufacturing of magnesium and its alloy structures for future applications[J]. Virtual Phys. Prototy., 2010, 5: 13
doi: 10.1080/17452751003718629
59 Zhang L, Yang G J, Johnson B N, et al. Three-dimensional (3D) printed scaffold and material selection for bone repair[J]. Acta Biomater., 2019, 84: 16
doi: S1742-7061(18)30702-5 pmid: 30481607
60 Tsai K Y, Lin H Y, Chen Y W, et al. Laser sintered magnesium-calcium silicate/poly-ε-caprolactone scaffold for bone tissue engineering[J]. Materials, 2017, 10: 65
doi: 10.3390/ma10010065
61 Sun H, He S W, Wu P, et al. A novel MgO-CaO-SiO2 system for fabricating bone scaffolds with improved overall performance[J]. Materials, 2016, 9: 287
doi: 10.3390/ma9040287
62 Salehi M, Maleksaeedi S, Nai M L S, et al. Towards additive manufacturing of magnesium alloys through integration of binderless 3D printing and rapid microwave sintering[J]. Addit. Manuf., 2019, 29: 100790
63 Mostafaei A, Rodriguez De Vecchis P, Buckenmeyer M J, et al. Microstructural evolution and resulting properties of differently sintered and heat-treated binder-jet 3D-printed Stellite 6[J]. Mater. Sci. Eng., 2019, C102: 276
64 Lv X Y, Ye F, Cheng L F, et al. Binder jetting of ceramics: Powders, binders, printing parameters, equipment, and post-treatment[J]. Ceram. Int., 2019, 45: 12609
doi: 10.1016/j.ceramint.2019.04.012
65 Polozov I, Sufiiarov V, Shamshurin A. Synthesis of titanium orthorhombic alloy using binder jetting additive manufacturing[J]. Mater. Lett., 2019, 243: 88
doi: 10.1016/j.matlet.2019.02.027
66 Kimes K, Myers K, Klein A, et al. Binder jet 3D printing of 316L stainless steel: Effects of HIP on fatigue[J]. Microsc. Microanal., 2019, 25(suppl.2) : 2600
67 Salehi M, Maleksaeedi S, Nai S M L, et al. A paradigm shift towards compositionally zero-sum binderless 3D printing of magnesium alloys via capillary-mediated bridging[J]. Acta Mater., 2019, 165: 294
doi: 10.1016/j.actamat.2018.11.061
68 Staiger M P, Kolbeinsson I, Kirkland N T, et al. Synthesis of topologically-ordered open-cell porous magnesium[J]. Mater. Lett., 2010, 64: 2572
doi: 10.1016/j.matlet.2010.08.049
69 Nguyen T L, Staiger M P, Dias G J, et al. A novel manufacturing route for fabrication of topologically-ordered porous magnesium scaffolds[J]. Adv. Eng. Mater., 2011, 13: 872
doi: 10.1002/adem.201100029
70 Zumdick N A, Jauer L, Kersting L C, et al. Additive manufactured WE43 magnesium: A comparative study of the microstructure and mechanical properties with those of powder extruded and as-cast WE43[J]. Mater. Charact., 2019, 147: 384
doi: 10.1016/j.matchar.2018.11.011
71 Zhang D Y, Qiu D, Zhu S M, et al. Grain refinement in laser remelted Mg-3Nd-1Gd-0.5Zr alloy[J]. Scr. Mater., 2020, 183: 12
doi: 10.1016/j.scriptamat.2020.03.006
72 StJohn D H, Qian M, Easton M A, et al. Grain refinement of magnesium alloys[J]. Metall. Mater. Trans., 2005, 36A: 1669
73 StJohn D H, Qian M, Easton M A, et al. The interdependence theory: The relationship between grain formation and nucleant selection[J]. Acta Mater., 2011, 59: 4907
doi: 10.1016/j.actamat.2011.04.035
74 Chen J, Wu P, Wang Q Y, et al. Influence of alloying treatment and rapid solidification on the degradation behavior and mechanical properties of Mg[J]. Metals, 2016, 6: 259
doi: 10.3390/met6110259
75 Li Y G, Jahr H, Zhou J, et al. Additively manufactured biodegradable porous metals[J]. Acta Biomater., 2020, 115: 29
doi: S1742-7061(20)30478-5 pmid: 32853809
76 Yang X, Liu J R, Wang Z N, et al. Microstructure and mechanical properties of wire and arc additive manufactured AZ31 magnesium alloy using cold metal transfer process[J]. Mater. Sci. Eng., 2020, A774: 138942
77 Gupta M, Sharon N M L. Magnesium, Magnesium Alloys, and Magnesium Composites[M]. Hoboken: John Wiley & Sons, Inc., 2011: 39
78 DebRoy T, Wei H L, Zuback J S, et al. Additive manufacturing of metallic components—Process, structure and properties[J]. Prog. Mater. Sci., 2018, 92: 112
doi: 10.1016/j.pmatsci.2017.10.001
79 Sorkhi L, Hammell J J, Crawford G A. Effect of interlayer interval time on the microstructure and mechanical behavior of additively manufactured WE43 Mg alloy[J]. Metall. Mater. Trans., 2020, 51A: 4390
80 Guo Y Y, Quan G F, Celikin M, et al. Effect of heat treatment on the microstructure and mechanical properties of AZ80M magnesium alloy fabricated by wire arc additive manufacturing[J]. J. Magnes. Alloy., 2022, 10: 1930
doi: 10.1016/j.jma.2021.04.006
81 Yuan L, Ding S L, Wen C E. Additive manufacturing technology for porous metal implant applications and triple minimal surface structures: A review[J]. Bioact. Mater., 2019, 4: 56
doi: 10.1016/j.bioactmat.2018.12.003 pmid: 30596158
82 Li Y, Li W, Bobbert F S L, et al. Corrosion fatigue behavior of additively manufactured biodegradable porous zinc[J]. Acta Biomater., 2020, 106: 439
doi: S1742-7061(20)30070-2 pmid: 32036018
83 Gollapudi S. Grain size distribution effects on the corrosion behaviour of materials[J]. Corros. Sci., 2012, 62: 90
doi: 10.1016/j.corsci.2012.04.040
84 Niu X M, Shen H Y, Fu J Z, et al. Corrosion behaviour of laser powder bed fused bulk pure magnesium in hank's solution[J]. Corros. Sci., 2019, 157: 284
doi: 10.1016/j.corsci.2019.05.026
85 Xu R, Zhao M C, Zhao Y C, et al. Improved biodegradation resistance by grain refinement of novel antibacterial ZK30-Cu alloys produced via selective laser melting[J]. Mater. Lett., 2019, 237: 253
doi: 10.1016/j.matlet.2018.11.071
86 Li Y, Zhou J, Pavanram P, et al. Additively manufactured biodegradable porous magnesium[J]. Acta Biomater., 2018, 67: 378
doi: S1742-7061(17)30764-X pmid: 29242158
87 Liu L, Yuan F L, Zhao M C, et al. Rare earth element yttrium modified Mg-Al-Zn alloy: Microstructure, degradation properties and hardness[J]. Materials, 2017, 10: 477
doi: 10.3390/ma10050477
88 Shuai C J, Yang Y W, Peng S P, et al. Nd-induced honeycomb structure of intermetallic phase enhances the corrosion resistance of Mg alloys for bone implants[J]. J. Mater. Sci. Mater. Med., 2017, 28: 130
doi: 10.1007/s10856-017-5945-0
89 Shuai C J, Zhou Y Z, Yang Y W, et al. Biodegradation resistance and bioactivity of hydroxyapatite enhanced Mg-Zn composites via selective laser melting[J]. Materials, 2017, 10: 307
doi: 10.3390/ma10030307
90 Alvarez-Lopez M, Pereda M D, Del Valle J A, et al. Corrosion behaviour of AZ31 magnesium alloy with different grain sizes in simulated biological fluids[J]. Acta Biomater., 2010, 6: 1763
doi: 10.1016/j.actbio.2009.04.041 pmid: 19446048
91 Zhao M C, Liu M, Song G L, et al. Influence of the β-phase morphology on the corrosion of the Mg alloy AZ91[J]. Corros. Sci., 2008, 50: 1939
doi: 10.1016/j.corsci.2008.04.010
92 Shuai C J, He C X, Feng P, et al. Biodegradation mechanisms of selective laser-melted Mg-xAl-Zn alloy: Grain size and intermetallic phase[J]. Virtual Phys. Prototy., 2018, 13: 59
doi: 10.1080/17452759.2017.1408918
93 Yang Y W, Guo X N, He C X, et al. Regulating degradation behavior by incorporating mesoporous silica for Mg bone implants[J]. ACS Biomater. Sci. Eng., 2018, 4: 1046
doi: 10.1021/acsbiomaterials.8b00020
94 Shuai C J, Zhou Y Z, Lin X, et al. Preparation and characterization of laser-melted Mg-Sn-Zn alloys for biomedical application[J]. J. Mater. Sci. Mater. Med., 2017, 28: 13
doi: 10.1007/s10856-016-5825-z
95 Wang X J, Xu S Q, Zhou S W, et al. Topological design and additive manufacturing of porous metals for bone scaffolds and orthopaedic implants: A review[J]. Biomaterials, 2016, 83: 127
doi: 10.1016/j.biomaterials.2016.01.012 pmid: 26773669
96 Zadpoor A A. Mechanics of additively manufactured biomaterials[J]. J. Mech. Behav. Biomed. Mater., 2017, 70: 1
doi: S1751-6161(17)30130-3 pmid: 28433241
97 Ng C C, Savalani M M, Lau M L, et al. Microstructure and mechanical properties of selective laser melted magnesium[J]. Appl. Surf. Sci., 2011, 257: 7447
doi: 10.1016/j.apsusc.2011.03.004
98 Han S, Zielewski M, Holguin D M, et al. Optimization of AZ91D process and corrosion resistance using wire arc additive manufacturing[J]. Appl. Sci., 2018, 8: 1306
doi: 10.3390/app8081306
99 Li J W, Qiu Y M, Yang J J, et al. Effect of grain refinement induced by wire and arc additive manufacture (WAAM) on the corrosion behaviors of AZ31 magnesium alloy in NaCl solution[J]. J. Magnes. Alloy., 2021, doi: 10.1016/j.jma.2021.04.007
doi: 10.1016/j.jma.2021.04.007
100 Ralston K D, Birbilis N, Davies C H J. Revealing the relationship between grain size and corrosion rate of metals[J]. Scr. Mater., 2010, 63: 1201
doi: 10.1016/j.scriptamat.2010.08.035
101 Sun X F, Song W, Liang J J, et al. Research and development in materials and processes of superalloy fabricated by laser additive manufacturing[J]. Acta Metall. Sin., 2021, 57: 1471
doi: 10.11900/0412.1961.2021.00371
孙晓峰, 宋 巍, 梁静静 等. 激光增材制造高温合金材料与工艺研究进展[J]. 金属学报, 2021, 57: 1471
doi: 10.11900/0412.1961.2021.00371
102 Martina F, Colegrove P A, Williams S W, et al. Microstructure of interpass rolled wire + arc additive manufacturing Ti-6Al-4V components[J]. Metall. Mater. Trans., 2015, 46A: 6103
103 Shakil S I, Smith N R, Yoder S P, et al. Post fabrication thermomechanical processing of additive manufactured metals: A review[J]. J. Manuf. Processes, 2022, 73: 757
doi: 10.1016/j.jmapro.2021.11.047
104 Fu Y H, Zhang H O, Wang G L, et al. Investigation of mechanical properties for hybrid deposition and micro-rolling of bainite steel[J]. J. Mater. Process. Technol., 2017, 250: 220
doi: 10.1016/j.jmatprotec.2017.07.023
105 Gu J L, Ding J L, Williams S W, et al. The effect of inter-layer cold working and post-deposition heat treatment on porosity in additively manufactured aluminum alloys[J]. J. Mater. Process. Technol., 2016, 230: 26
doi: 10.1016/j.jmatprotec.2015.11.006
106 Gao M, Mei S W, Wang Z M, et al. Process and joint characterizations of laser-MIG hybrid welding of AZ31 magnesium alloy[J]. J. Mater. Process. Technol., 2012, 212: 1338
doi: 10.1016/j.jmatprotec.2012.01.011
107 Wu D J, Liu D H, Niu F Y, et al. Al-Cu alloy fabricated by novel laser-tungsten inert gas hybrid additive manufacturing[J]. Addit. Manuf., 2020, 32: 100954
108 Liu D H, Wu D J, Wang R Z, et al. Formation mechanism of Al-Zn-Mg-Cu alloy fabricated by laser-arc hybrid additive manufacturing: Microstructure evaluation and mechanical properties[J]. Addit. Manuf., 2022, 50: 102554
109 Wang Y F, Chen X Z, Shen Q K, et al. Effect of magnetic Field on the microstructure and mechanical properties of inconel 625 superalloy fabricated by wire arc additive manufacturing[J]. J. Manuf. Processses, 2021, 64: 10
doi: 10.1016/j.jmapro.2021.01.008
110 Yuan D, Shao S Q, Guo C H, et al. Grain refining of Ti-6Al-4V alloy fabricated by laser and wire additive manufacturing assisted with ultrasonic vibration[J]. Ultrason. Sonochem., 2021, 73: 105472
doi: 10.1016/j.ultsonch.2021.105472
111 Yang D Q, Wang X W, Peng Y, et al. Microstructure and properties of 316 L stainless steel fabricated by gas mental arc additive manufacturing with ultrasonic vibration treatment[J]. Mater. Rev., 2022, 36(1): 20120270
杨东青, 王小伟, 彭 勇 等. 超声冲击辅助熔化极电弧增材制造316L不锈钢的组织和性能研究[J]. 材料导报, 2022, 36(1): 20120270
[1] ZHENG Liang, ZHANG Qiang, LI Zhou, ZHANG Guoqing. Effects of Oxygen Increasing/Decreasing Processes on Surface Characteristics of Superalloy Powders and Properties of Their Bulk Alloy Counterparts: Powders Storage and Degassing[J]. 金属学报, 2023, 59(9): 1265-1278.
[2] WANG Lei, LIU Mengya, LIU Yang, SONG Xiu, MENG Fanqiang. Research Progress on Surface Impact Strengthening Mechanisms and Application of Nickel-Based Superalloys[J]. 金属学报, 2023, 59(9): 1173-1189.
[3] ZHANG Leilei, CHEN Jingyang, TANG Xin, XIAO Chengbo, ZHANG Mingjun, YANG Qing. Evolution of Microstructures and Mechanical Properties of K439B Superalloy During Long-Term Aging at 800oC[J]. 金属学报, 2023, 59(9): 1253-1264.
[4] LU Nannan, GUO Yimo, YANG Shulin, LIANG Jingjing, ZHOU Yizhou, SUN Xiaofeng, LI Jinguo. Formation Mechanisms of Hot Cracks in Laser Additive Repairing Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1243-1252.
[5] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[6] ZHANG Jian, WANG Li, XIE Guang, WANG Dong, SHEN Jian, LU Yuzhang, HUANG Yaqi, LI Yawei. Recent Progress in Research and Development of Nickel-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1109-1124.
[7] MU Yahang, ZHANG Xue, CHEN Ziming, SUN Xiaofeng, LIANG Jingjing, LI Jinguo, ZHOU Yizhou. Modeling of Crack Susceptibility of Ni-Based Superalloy for Additive Manufacturing via Thermodynamic Calculation and Machine Learning[J]. 金属学报, 2023, 59(8): 1075-1086.
[8] LI Jingren, XIE Dongsheng, ZHANG Dongdong, XIE Hongbo, PAN Hucheng, REN Yuping, QIN Gaowu. Microstructure Evolution Mechanism of New Low-Alloyed High-Strength Mg-0.2Ce-0.2Ca Alloy During Extrusion[J]. 金属学报, 2023, 59(8): 1087-1096.
[9] DING Hua, ZHANG Yu, CAI Minghui, TANG Zhengyou. Research Progress and Prospects of Austenite-Based Fe-Mn-Al-C Lightweight Steels[J]. 金属学报, 2023, 59(8): 1027-1041.
[10] CHEN Liqing, LI Xing, ZHAO Yang, WANG Shuai, FENG Yang. Overview of Research and Development of High-Manganese Damping Steel with Integrated Structure and Function[J]. 金属学报, 2023, 59(8): 1015-1026.
[11] LIU Xingjun, WEI Zhenbang, LU Yong, HAN Jiajia, SHI Rongpei, WANG Cuiping. Progress on the Diffusion Kinetics of Novel Co-based and Nb-Si-based Superalloys[J]. 金属学报, 2023, 59(8): 969-985.
[12] SUN Rongrong, YAO Meiyi, WANG Haoyu, ZHANG Wenhuai, HU Lijuan, QIU Yunlong, LIN Xiaodong, XIE Yaoping, YANG Jian, DONG Jianxin, CHENG Guoguang. High-Temperature Steam Oxidation Behavior of Fe22Cr5Al3Mo-xY Alloy Under Simulated LOCA Condition[J]. 金属学报, 2023, 59(7): 915-925.
[13] YUAN Jianghuai, WANG Zhenyu, MA Guanshui, ZHOU Guangxue, CHENG Xiaoying, WANG Aiying. Effect of Phase-Structure Evolution on Mechanical Properties of Cr2AlC Coating[J]. 金属学报, 2023, 59(7): 961-968.
[14] FENG Aihan, CHEN Qiang, WANG Jian, WANG Hao, QU Shoujiang, CHEN Daolun. Thermal Stability of Microstructures in Low-Density Ti2AlNb-Based Alloy Hot Rolled Plate[J]. 金属学报, 2023, 59(6): 777-786.
[15] WU Dongjiang, LIU Dehua, ZHANG Ziao, ZHANG Yilun, NIU Fangyong, MA Guangyi. Microstructure and Mechanical Properties of 2024 Aluminum Alloy Prepared by Wire Arc Additive Manufacturing[J]. 金属学报, 2023, 59(6): 767-776.
No Suggested Reading articles found!