|
|
Research Progress of Additively Manufactured Magnesium Alloys: A Review |
TANG Weineng1, MO Ning1, HOU Juan2( ) |
1.Mg & Mg Alloy Research Institute, Technology Center, Baosteel Metal Co., Ltd., China Baowu Steel Group Corporation, Shanghai 200940, China 2.School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China |
|
Cite this article:
TANG Weineng, MO Ning, HOU Juan. Research Progress of Additively Manufactured Magnesium Alloys: A Review. Acta Metall Sin, 2023, 59(2): 205-225.
|
Abstract Mg alloys are attractive in the fields of aerospace, automotive, and biomedical engineering, owing to the advantages of light weight, high specific strength, excellent damping property, good biocompatibility, and in vivo degradable property. However, conventional methods for manufacturing Mg alloys, such as casting and deformation processing, yield low-quality large-scale monolithic and complex structures, which hinder the applications of Mg parts. Additive manufacturing (AM) is a burgeoning alternative to manufacture monolithic parts through layer-by-layer deposition of metallic materials using 3D model data. In this paper, the latest research progress in AM of Mg alloys, which focuses on technological processes and influencing factors, macro and microstructures, mechanical properties, and corrosion properties of parts manufactured primarily by selective laser melting (SLM) and wire and arc AM (WAAM), are comprehensively reviewed. Currently, additively manufactured Mg parts with a relative density > 99% have been achievable through both SLM and WAAM after process optimization, and their mechanical properties and corrosion resistance have been comparable to those of casting and wrought parts, indicating a great potential for engineering applications. Finally, the future development trend and research direction of AM of Mg alloys are proposed from the perspectives of materials design, process improvement, and performance evaluation.
|
Received: 17 February 2020
|
|
Fund: National Key Research and Development Program of China(2021YFB3701102);National Natural Science Foundation of China(52073176);Natural Science Foundation of Shanghai(22-ZR1443000) |
About author: HOU Juan, associate professor, Tel: 18217727686, E-mail: houjuanlife@yahoo.com
|
1 |
Ding W J, Zeng X Q. Research and applications of magnesium in China[J]. Acta Metall. Sin., 2010, 46: 1450
doi: 10.3724/SP.J.1037.2010.01450
|
|
丁文江, 曾小勤. 中国Mg材料研发与应用[J]. 金属学报, 2010, 46: 1450
doi: 10.3724/SP.J.1037.2010.00386
|
2 |
Pan F S, Jiang B. Development and application of plastic processing technologies of magnesium alloys[J]. Acta Metall. Sin., 2021, 57: 1362
doi: 10.11900/0412.1961.2021.00349
|
|
潘复生, 蒋 斌. 镁合金塑性加工技术发展及应用[J]. 金属学报, 2021, 57: 1362
doi: 10.11900/0412.1961.2021.00349
|
3 |
Li X L, Ma J X, Li P, et al. 3D printing technology and its application trend[J]. Process Auto. Instru., 2014, 35(1): 1
|
|
李小丽, 马剑雄, 李 萍 等. 3D打印技术及应用趋势[J]. 自动化仪表, 2014, 35(1): 1
|
4 |
Chi M. Numerical and experimental research of selective laser melting additive manufacturing for metal material[D]. Shanghai: East China University of Science and Technology, 2019
|
|
池 敏. 金属激光选区熔化增材制造数值模拟与实验研究[D]. 上海: 华东理工大学, 2019
|
5 |
Liu J S. Numerical simulation and machining emulation of selective laser sintering[D]. Nanchang: East China Jiaotong University, 2011
|
|
刘建书. 选择性激光烧结数值模拟与加工仿真[D]. 南昌: 华东交通大学, 2011
|
6 |
Frazier W E. Metal additive manufacturing: A review[J]. J. Mater. Eng. Perform., 2014, 23: 1917
doi: 10.1007/s11665-014-0958-z
|
7 |
Lu B H, Li D C. Development of the additive manufacturing (3D printing) technology[J]. Mach. Build. Auto., 2013, 42(4): 1
|
|
卢秉恒, 李涤尘. 增材制造(3D打印)技术发展[J]. 机械制造与自动化, 2013, 42(4): 1
|
8 |
Deng L F, Yan Y F. Research status and progress of biomaterials for bone repair and reconstruction[J]. Chin. J. Repar. Reconstr. Surg., 2018, 32: 815
|
|
邓廉夫, 燕宇飞. 骨修复材料的研究现状与进展[J]. 中国修复重建外科杂志, 2018, 32: 815
|
9 |
Zheng Y F, Xia D D, Shen Y N, et al. Additively manufactured biodegrabable metal implants[J]. Acta Metall. Sin., 2021, 57: 1499
doi: 10.11900/0412.1961.2021.00294
|
|
郑玉峰, 夏丹丹, 谌雨农 等. 增材制造可降解金属医用植入物[J]. 金属学报, 2021, 57: 1499
doi: 10.11900/0412.1961.2021.00294
|
10 |
Yuan G Y, Niu J L. Research progress of biodegradable magnesium alloys for orthopedic applications[J]. Acta Metall. Sin., 2017, 53: 1168
|
|
袁广银, 牛佳林. 可降解医用镁合金在骨修复应用中的研究进展[J]. 金属学报, 2017, 53: 1168
|
11 |
Zheng Y F, Yang H T. Research progress in biodegradable metals for stent application[J]. Acta Metall. Sin., 2017, 53: 1227
|
|
郑玉峰, 杨宏韬. 血管支架用可降解金属研究进展[J]. 金属学报, 2017, 53: 1227
doi: 10.11900/0412.1961.2017.00270
|
12 |
Qin Y, Wen P, Voshage M, et al. Additive manufacturing of biodegradable Zn-xWE43 porous scaffolds: Formation quality, microstructure and mechanical properties[J]. Mater. Des., 2019, 181: 107937
doi: 10.1016/j.matdes.2019.107937
|
13 |
Qin Y, Wen P, Guo H, et al. Additive manufacturing of biodegradable metals: Current research status and future perspectives[J]. Acta Biomater., 2019, 98: 3
doi: S1742-7061(19)30289-2
pmid: 31029830
|
14 |
Xiao Z F, Yang Y Q, Xiao R, et al. Evaluation of topology-optimized lattice structures manufactured via selective laser melting[J]. Mater. Des., 2018, 143: 27
doi: 10.1016/j.matdes.2018.01.023
|
15 |
Croteau J R, Griffiths S, Rossell M D, et al. Microstructure and mechanical properties of Al-Mg-Zr alloys processed by selective laser melting[J]. Acta Mater., 2018, 153: 35
doi: 10.1016/j.actamat.2018.04.053
|
16 |
Sing S L, An J, Yeong W Y, et al. Laser and electron-beam powder-bed additive manufacturing of metallic implants: A review on processes, materials and designs[J]. J. Orthop. Res., 2016, 34: 369
doi: 10.1002/jor.23075
pmid: 26488900
|
17 |
Liu C M, Liu Z J, Zhu X R, et al. Research and development progress of dynamic recrystallization in pure magnesium and its alloys[J]. Chin. J. Nonferrous Met., 2006, 16: 1
doi: 10.1016/S1003-6326(06)60001-0
|
|
刘楚明, 刘子娟, 朱秀荣 等. 镁及镁合金动态再结晶研究进展[J]. 中国有色金属学报, 2006, 16: 1
|
18 |
Zhang S C, Duan H Q, Cai Q Z, et al. Effects of the main alloying elements on microstructure and properties of magnesium alloys[J]. Foundry, 2001, 50: 310
|
|
张诗昌, 段汉桥, 蔡启舟 等. 主要合金元素对镁合金组织和性能的影响[J]. 铸造, 2001, 50: 310
|
19 |
Chen X Q, Liu J W, Luo C P. Research status and development trend of Mg-Zn alloys with high strength[J]. Mater. Rev., 2008, 22(5): 58
|
|
陈晓强, 刘江文, 罗承萍. 高强度Mg-Zn系合金的研究现状与发展趋势[J]. 材料导报, 2008, 22(5): 58
|
20 |
Liu S. Research on the process and properties of AZ61 magnesium alloy fabricated by selective laser melting[D]. Beijing: University of Science and Technology Beijing, 2020
|
|
刘 帅. AZ61镁合金选择性激光熔化工艺与性能研究[D]. 北京: 北京科技大学, 2020
|
21 |
Liu S, Yang W S, Shi X, et al. Influence of laser process parameters on the densification, microstructure, and mechanical properties of a selective laser melted AZ61 magnesium alloy[J]. J. Alloys Compd., 2019, 808: 151160
doi: 10.1016/j.jallcom.2019.06.261
|
22 |
Wei K W, Gao M, Wang Z M, et al. Effect of energy input on formability, microstructure and mechanical properties of selective laser melted AZ91D magnesium alloy[J]. Mater. Sci. Eng., 2014, A611: 212
|
23 |
Hyer H, Zhou L, Benson G, et al. Additive manufacturing of dense WE43 Mg alloy by laser powder bed fusion[J]. Addit. Manuf., 2020, 33: 101123
|
24 |
Deng Q C, Wu Y J, Wu Q Y, et al. Microstructure evolution and mechanical properties of a high-strength Mg-10Gd-3Y-1Zn-0.4Zr alloy fabricated by laser powder bed fusion[J]. Addit. Manuf., 2022, 49: 102517
|
25 |
Deng Q C, Wu Y J, Luo Y H, et al. Fabrication of high-strength Mg-Gd-Zn-Zr alloy via selective laser melting[J]. Mater. Charact., 2020, 165: 110377
doi: 10.1016/j.matchar.2020.110377
|
26 |
Hu G W. Research on processing and forming mechanism of ZK61 magnesium alloy by selective laser melting[D]. Wuhan: Huazhong University of Science and Technology, 2013
|
|
胡国文. 选区激光熔化成形ZK61镁合金的工艺与机理研究[D]. 武汉: 华中科技大学, 2013
|
27 |
Wu J J, Wang L Z. Selective laser melting manufactured CNTs/AZ31B composites: Heat transfer and vaporized porosity evolution[J]. J. Mater. Res., 2018, 33: 2752
doi: 10.1557/jmr.2018.224
|
28 |
Gu D D, Meiners W, Wissenbach K, et al. Laser additive manufacturing of metallic components: Materials, processes and mechanisms[J]. Int. Mater. Rev., 2012, 57: 133
doi: 10.1179/1743280411Y.0000000014
|
29 |
Olakanmi E O, Cochrane R F, Dalgarno K W. A review on selective laser sintering/melting (SLS/SLM) of aluminium alloy powders: Processing, microstructure, and properties[J]. Prog. Mater. Sci., 2015, 74: 401
doi: 10.1016/j.pmatsci.2015.03.002
|
30 |
Hu D, Wang Y, Zhang D F, et al. Experimental investigation on selective laser melting of bulk net-shape pure magnesium[J]. Mater. Manuf. Processes, 2015, 30: 1298
doi: 10.1080/10426914.2015.1025963
|
31 |
Liu C. Study on the forming technology, microstructure and properties of porous magnesium alloys produced by laser additive manufacturing[D]. Suzhou: Suzhou University, 2018
|
|
刘 畅. 激光增材制造多孔镁合金成形工艺及组织性能研究[D]. 苏州: 苏州大学, 2018
|
32 |
Shuai C J, Liu L, Zhao M C, et al. Microstructure, biodegradation, antibacterial and mechanical properties of ZK60-Cu alloys prepared by selective laser melting technique[J]. J. Mater. Sci. Technol., 2018, 34: 1944
doi: 10.1016/j.jmst.2018.02.006
|
33 |
Zhou H. Study on process and microstructure and properties of ZK61 magnesium alloy by selective laser melting[D]. Wuhan: Huazhong University of Science and Technology, 2019
|
|
周 华. 激光选区熔化成形ZK61镁合金工艺及组织性能研究[D]. 武汉: 华中科技大学, 2019
|
34 |
Liu C, Zhang M, Chen C J. Effect of laser processing parameters on porosity, microstructure and mechanical properties of porous Mg-Ca alloys produced by laser additive manufacturing[J]. Mater. Sci. Eng., 2017, A703: 359
|
35 |
Zhang B C, Liao H L, Coddet C. Effects of processing parameters on properties of selective laser melting Mg-9%Al powder mixture[J]. Mater. Des., 2012, 34: 753
doi: 10.1016/j.matdes.2011.06.061
|
36 |
Dong J, Tümer N, Leeflang M A, et al. Extrusion-based additive manufacturing of Mg-Zn alloy scaffolds[J]. J. Magnes. Alloy., 2022, 10: 2491
doi: 10.1016/j.jma.2021.11.018
|
37 |
Pawlak A, Szymczyk P E, Kurzynowski T, et al. Selective laser melting of magnesium AZ31B alloy powder[J]. Rapid Prototyping J., 2020, 26: 249
doi: 10.1108/RPJ-05-2019-0137
|
38 |
Niu X M, Shen H Y, Fu J Z, et al. Effective control of microstructure evolution in AZ91D magnesium alloy by SiC nanoparticles in laser powder-bed fusion[J]. Mater. Des., 2021, 206: 109787
doi: 10.1016/j.matdes.2021.109787
|
39 |
Shuai C J, Yang Y W, Wu P, et al. Laser rapid solidification improves corrosion behavior of Mg-Zn-Zr alloy[J]. J. Alloys Compd., 2017, 691: 961
doi: 10.1016/j.jallcom.2016.09.019
|
40 |
Wu C L, Zai W, Man H C. Additive manufacturing of ZK60 magnesium alloy by selective laser melting: Parameter optimization, microstructure and biodegradability[J]. Mater. Today Commun., 2021, 26: 101922
|
41 |
Esmaily M, Zeng Z, Mortazavi A N, et al. A detailed microstructural and corrosion analysis of magnesium alloy WE43 manufactured by selective laser melting[J]. Addit. Manuf., 2020, 35: 101321
|
42 |
Gangireddy S, Gwalani B, Liu K M, et al. Microstructure and mechanical behavior of an additive manufactured (AM) WE43-Mg alloy[J]. Addit. Manuf., 2019, 26: 53
doi: 10.1016/j.addma.2018.12.015
|
43 |
Zhang Z D, He S B, Wang Q P, et al. Research status of process method, additive solder and post-processing in arc additive manufacturing[J]. Elect. Weld. Machi., 2021, 51(8): 1
|
|
张兆栋, 何胜斌, 王奇鹏 等. 电弧增材制造工艺方法、增材焊料及后处理的研究现状[J]. 电焊机, 2021, 51(8): 1
|
44 |
Takagi H, Sasahara H, Abe T, et al. Material-property evaluation of magnesium alloys fabricated using wire-and-arc-based additive manufacturing[J]. Addit. Manuf., 2018, 24: 498
|
45 |
Madhuri N, Jayakumar V, Sathishkumar M. Recent developments and challenges accompanying with wire arc additive manufacturing of Mg alloys: A review[J]. Mater. Today Proceed., 2021, 46: 8573
|
46 |
Xu C J, Zhang K J, Ma D, et al. Development and application of arc additive manufacturing and magnesium alloy WAAM forming technology[J]. Foundry Technol., 2021, 42: 521
|
|
徐春杰, 张凯军, 马 东 等. 电弧增材及镁合金WAAM成形技术发展及应用[J]. 铸造技术, 2021, 42: 521
|
47 |
Liu J N, Xu Y L, Ge Y, et al. Wire and arc additive manufacturing of metal components: A review of recent research developments[J]. Int. J. Adv. Manuf. Technol., 2020, 111: 149
doi: 10.1007/s00170-020-05966-8
|
48 |
Li D C, He J K, Tian X Y, et al. Additive manufacturing: Integrated fabrication of macro/microstructures[J]. Chin. J. Mech. Eng., 2013, 49(6): 129
|
|
李涤尘, 贺健康, 田小永 等. 增材制造: 实现宏微结构一体化制造[J]. 机械工程学报, 2013, 49(6): 129
|
49 |
Xiong J T, Geng H B, Lin X, et al. Research status of wire and arc additive manufacture and its application in aeronautical manufacturing[J]. Aeronaut. Manuf. Technol., 2015, (23-24): 80
|
|
熊江涛, 耿海滨, 林 鑫 等. 电弧增材制造研究现状及在航空制造中应用前景[J]. 航空制造技术, 2015, (23-24): 80
|
50 |
Guo J, Zhou Y, Liu C M, et al. Wire arc additive manufacturing of AZ31 magnesium alloy: Grain refinement by adjusting pulse frequency[J]. Materials, 2016, 9: 823
doi: 10.3390/ma9100823
|
51 |
Ying T, Zhao Z X, Yan P F, et al. Effect of fabrication parameters on the microstructure and mechanical properties of wire arc additive manufactured AZ61 alloy[J]. Mater. Lett., 2022, 307: 131014
doi: 10.1016/j.matlet.2021.131014
|
52 |
Guo Y Y, Quan G F, Jiang Y L, et al. Formability, microstructure evolution and mechanical properties of wire arc additively manufactured AZ80M magnesium alloy using gas tungsten arc welding[J]. J. Magnes. Alloy., 2021, 9: 192
doi: 10.1016/j.jma.2020.01.003
|
53 |
Guo Y Y, Pan H H, Ren L B, et al. Microstructure and mechanical properties of wire arc additively manufactured AZ80M magnesium alloy[J]. Mater. Lett., 2019, 247: 4
doi: 10.1016/j.matlet.2019.03.063
|
54 |
Wang P, Zhang H Z, Zhu H, et al. Wire-arc additive manufacturing of AZ31 magnesium alloy fabricated by cold metal transfer heat source: Processing, microstructure, and mechanical behavior[J]. J. Mater. Process. Technol, 2021, 288: 116895
doi: 10.1016/j.jmatprotec.2020.116895
|
55 |
Bi J, Shen J Q, Hu S S, et al. Microstructure and mechanical properties of AZ91 Mg alloy fabricated by cold metal transfer additive manufacturing[J]. Mater. Lett., 2020, 276: 128185
doi: 10.1016/j.matlet.2020.128185
|
56 |
Klein T, Arnoldt A, Schnall M, et al. Microstructure formation and mechanical properties of a wire-arc additive manufactured magnesium alloy[J]. JOM, 2021, 73: 1126
doi: 10.1007/s11837-021-04567-4
|
57 |
Gneiger S, Österreicher J A, Arnoldt A R, et al. Development of a high strength magnesium alloy for wire arc additive manufacturing[J]. Metals, 2020, 10: 778
doi: 10.3390/met10060778
|
58 |
Ng C C, Savalani M M, Man H C, et al. Layer manufacturing of magnesium and its alloy structures for future applications[J]. Virtual Phys. Prototy., 2010, 5: 13
doi: 10.1080/17452751003718629
|
59 |
Zhang L, Yang G J, Johnson B N, et al. Three-dimensional (3D) printed scaffold and material selection for bone repair[J]. Acta Biomater., 2019, 84: 16
doi: S1742-7061(18)30702-5
pmid: 30481607
|
60 |
Tsai K Y, Lin H Y, Chen Y W, et al. Laser sintered magnesium-calcium silicate/poly-ε-caprolactone scaffold for bone tissue engineering[J]. Materials, 2017, 10: 65
doi: 10.3390/ma10010065
|
61 |
Sun H, He S W, Wu P, et al. A novel MgO-CaO-SiO2 system for fabricating bone scaffolds with improved overall performance[J]. Materials, 2016, 9: 287
doi: 10.3390/ma9040287
|
62 |
Salehi M, Maleksaeedi S, Nai M L S, et al. Towards additive manufacturing of magnesium alloys through integration of binderless 3D printing and rapid microwave sintering[J]. Addit. Manuf., 2019, 29: 100790
|
63 |
Mostafaei A, Rodriguez De Vecchis P, Buckenmeyer M J, et al. Microstructural evolution and resulting properties of differently sintered and heat-treated binder-jet 3D-printed Stellite 6[J]. Mater. Sci. Eng., 2019, C102: 276
|
64 |
Lv X Y, Ye F, Cheng L F, et al. Binder jetting of ceramics: Powders, binders, printing parameters, equipment, and post-treatment[J]. Ceram. Int., 2019, 45: 12609
doi: 10.1016/j.ceramint.2019.04.012
|
65 |
Polozov I, Sufiiarov V, Shamshurin A. Synthesis of titanium orthorhombic alloy using binder jetting additive manufacturing[J]. Mater. Lett., 2019, 243: 88
doi: 10.1016/j.matlet.2019.02.027
|
66 |
Kimes K, Myers K, Klein A, et al. Binder jet 3D printing of 316L stainless steel: Effects of HIP on fatigue[J]. Microsc. Microanal., 2019, 25(suppl.2) : 2600
|
67 |
Salehi M, Maleksaeedi S, Nai S M L, et al. A paradigm shift towards compositionally zero-sum binderless 3D printing of magnesium alloys via capillary-mediated bridging[J]. Acta Mater., 2019, 165: 294
doi: 10.1016/j.actamat.2018.11.061
|
68 |
Staiger M P, Kolbeinsson I, Kirkland N T, et al. Synthesis of topologically-ordered open-cell porous magnesium[J]. Mater. Lett., 2010, 64: 2572
doi: 10.1016/j.matlet.2010.08.049
|
69 |
Nguyen T L, Staiger M P, Dias G J, et al. A novel manufacturing route for fabrication of topologically-ordered porous magnesium scaffolds[J]. Adv. Eng. Mater., 2011, 13: 872
doi: 10.1002/adem.201100029
|
70 |
Zumdick N A, Jauer L, Kersting L C, et al. Additive manufactured WE43 magnesium: A comparative study of the microstructure and mechanical properties with those of powder extruded and as-cast WE43[J]. Mater. Charact., 2019, 147: 384
doi: 10.1016/j.matchar.2018.11.011
|
71 |
Zhang D Y, Qiu D, Zhu S M, et al. Grain refinement in laser remelted Mg-3Nd-1Gd-0.5Zr alloy[J]. Scr. Mater., 2020, 183: 12
doi: 10.1016/j.scriptamat.2020.03.006
|
72 |
StJohn D H, Qian M, Easton M A, et al. Grain refinement of magnesium alloys[J]. Metall. Mater. Trans., 2005, 36A: 1669
|
73 |
StJohn D H, Qian M, Easton M A, et al. The interdependence theory: The relationship between grain formation and nucleant selection[J]. Acta Mater., 2011, 59: 4907
doi: 10.1016/j.actamat.2011.04.035
|
74 |
Chen J, Wu P, Wang Q Y, et al. Influence of alloying treatment and rapid solidification on the degradation behavior and mechanical properties of Mg[J]. Metals, 2016, 6: 259
doi: 10.3390/met6110259
|
75 |
Li Y G, Jahr H, Zhou J, et al. Additively manufactured biodegradable porous metals[J]. Acta Biomater., 2020, 115: 29
doi: S1742-7061(20)30478-5
pmid: 32853809
|
76 |
Yang X, Liu J R, Wang Z N, et al. Microstructure and mechanical properties of wire and arc additive manufactured AZ31 magnesium alloy using cold metal transfer process[J]. Mater. Sci. Eng., 2020, A774: 138942
|
77 |
Gupta M, Sharon N M L. Magnesium, Magnesium Alloys, and Magnesium Composites[M]. Hoboken: John Wiley & Sons, Inc., 2011: 39
|
78 |
DebRoy T, Wei H L, Zuback J S, et al. Additive manufacturing of metallic components—Process, structure and properties[J]. Prog. Mater. Sci., 2018, 92: 112
doi: 10.1016/j.pmatsci.2017.10.001
|
79 |
Sorkhi L, Hammell J J, Crawford G A. Effect of interlayer interval time on the microstructure and mechanical behavior of additively manufactured WE43 Mg alloy[J]. Metall. Mater. Trans., 2020, 51A: 4390
|
80 |
Guo Y Y, Quan G F, Celikin M, et al. Effect of heat treatment on the microstructure and mechanical properties of AZ80M magnesium alloy fabricated by wire arc additive manufacturing[J]. J. Magnes. Alloy., 2022, 10: 1930
doi: 10.1016/j.jma.2021.04.006
|
81 |
Yuan L, Ding S L, Wen C E. Additive manufacturing technology for porous metal implant applications and triple minimal surface structures: A review[J]. Bioact. Mater., 2019, 4: 56
doi: 10.1016/j.bioactmat.2018.12.003
pmid: 30596158
|
82 |
Li Y, Li W, Bobbert F S L, et al. Corrosion fatigue behavior of additively manufactured biodegradable porous zinc[J]. Acta Biomater., 2020, 106: 439
doi: S1742-7061(20)30070-2
pmid: 32036018
|
83 |
Gollapudi S. Grain size distribution effects on the corrosion behaviour of materials[J]. Corros. Sci., 2012, 62: 90
doi: 10.1016/j.corsci.2012.04.040
|
84 |
Niu X M, Shen H Y, Fu J Z, et al. Corrosion behaviour of laser powder bed fused bulk pure magnesium in hank's solution[J]. Corros. Sci., 2019, 157: 284
doi: 10.1016/j.corsci.2019.05.026
|
85 |
Xu R, Zhao M C, Zhao Y C, et al. Improved biodegradation resistance by grain refinement of novel antibacterial ZK30-Cu alloys produced via selective laser melting[J]. Mater. Lett., 2019, 237: 253
doi: 10.1016/j.matlet.2018.11.071
|
86 |
Li Y, Zhou J, Pavanram P, et al. Additively manufactured biodegradable porous magnesium[J]. Acta Biomater., 2018, 67: 378
doi: S1742-7061(17)30764-X
pmid: 29242158
|
87 |
Liu L, Yuan F L, Zhao M C, et al. Rare earth element yttrium modified Mg-Al-Zn alloy: Microstructure, degradation properties and hardness[J]. Materials, 2017, 10: 477
doi: 10.3390/ma10050477
|
88 |
Shuai C J, Yang Y W, Peng S P, et al. Nd-induced honeycomb structure of intermetallic phase enhances the corrosion resistance of Mg alloys for bone implants[J]. J. Mater. Sci. Mater. Med., 2017, 28: 130
doi: 10.1007/s10856-017-5945-0
|
89 |
Shuai C J, Zhou Y Z, Yang Y W, et al. Biodegradation resistance and bioactivity of hydroxyapatite enhanced Mg-Zn composites via selective laser melting[J]. Materials, 2017, 10: 307
doi: 10.3390/ma10030307
|
90 |
Alvarez-Lopez M, Pereda M D, Del Valle J A, et al. Corrosion behaviour of AZ31 magnesium alloy with different grain sizes in simulated biological fluids[J]. Acta Biomater., 2010, 6: 1763
doi: 10.1016/j.actbio.2009.04.041
pmid: 19446048
|
91 |
Zhao M C, Liu M, Song G L, et al. Influence of the β-phase morphology on the corrosion of the Mg alloy AZ91[J]. Corros. Sci., 2008, 50: 1939
doi: 10.1016/j.corsci.2008.04.010
|
92 |
Shuai C J, He C X, Feng P, et al. Biodegradation mechanisms of selective laser-melted Mg-xAl-Zn alloy: Grain size and intermetallic phase[J]. Virtual Phys. Prototy., 2018, 13: 59
doi: 10.1080/17452759.2017.1408918
|
93 |
Yang Y W, Guo X N, He C X, et al. Regulating degradation behavior by incorporating mesoporous silica for Mg bone implants[J]. ACS Biomater. Sci. Eng., 2018, 4: 1046
doi: 10.1021/acsbiomaterials.8b00020
|
94 |
Shuai C J, Zhou Y Z, Lin X, et al. Preparation and characterization of laser-melted Mg-Sn-Zn alloys for biomedical application[J]. J. Mater. Sci. Mater. Med., 2017, 28: 13
doi: 10.1007/s10856-016-5825-z
|
95 |
Wang X J, Xu S Q, Zhou S W, et al. Topological design and additive manufacturing of porous metals for bone scaffolds and orthopaedic implants: A review[J]. Biomaterials, 2016, 83: 127
doi: 10.1016/j.biomaterials.2016.01.012
pmid: 26773669
|
96 |
Zadpoor A A. Mechanics of additively manufactured biomaterials[J]. J. Mech. Behav. Biomed. Mater., 2017, 70: 1
doi: S1751-6161(17)30130-3
pmid: 28433241
|
97 |
Ng C C, Savalani M M, Lau M L, et al. Microstructure and mechanical properties of selective laser melted magnesium[J]. Appl. Surf. Sci., 2011, 257: 7447
doi: 10.1016/j.apsusc.2011.03.004
|
98 |
Han S, Zielewski M, Holguin D M, et al. Optimization of AZ91D process and corrosion resistance using wire arc additive manufacturing[J]. Appl. Sci., 2018, 8: 1306
doi: 10.3390/app8081306
|
99 |
Li J W, Qiu Y M, Yang J J, et al. Effect of grain refinement induced by wire and arc additive manufacture (WAAM) on the corrosion behaviors of AZ31 magnesium alloy in NaCl solution[J]. J. Magnes. Alloy., 2021, doi: 10.1016/j.jma.2021.04.007
doi: 10.1016/j.jma.2021.04.007
|
100 |
Ralston K D, Birbilis N, Davies C H J. Revealing the relationship between grain size and corrosion rate of metals[J]. Scr. Mater., 2010, 63: 1201
doi: 10.1016/j.scriptamat.2010.08.035
|
101 |
Sun X F, Song W, Liang J J, et al. Research and development in materials and processes of superalloy fabricated by laser additive manufacturing[J]. Acta Metall. Sin., 2021, 57: 1471
doi: 10.11900/0412.1961.2021.00371
|
|
孙晓峰, 宋 巍, 梁静静 等. 激光增材制造高温合金材料与工艺研究进展[J]. 金属学报, 2021, 57: 1471
doi: 10.11900/0412.1961.2021.00371
|
102 |
Martina F, Colegrove P A, Williams S W, et al. Microstructure of interpass rolled wire + arc additive manufacturing Ti-6Al-4V components[J]. Metall. Mater. Trans., 2015, 46A: 6103
|
103 |
Shakil S I, Smith N R, Yoder S P, et al. Post fabrication thermomechanical processing of additive manufactured metals: A review[J]. J. Manuf. Processes, 2022, 73: 757
doi: 10.1016/j.jmapro.2021.11.047
|
104 |
Fu Y H, Zhang H O, Wang G L, et al. Investigation of mechanical properties for hybrid deposition and micro-rolling of bainite steel[J]. J. Mater. Process. Technol., 2017, 250: 220
doi: 10.1016/j.jmatprotec.2017.07.023
|
105 |
Gu J L, Ding J L, Williams S W, et al. The effect of inter-layer cold working and post-deposition heat treatment on porosity in additively manufactured aluminum alloys[J]. J. Mater. Process. Technol., 2016, 230: 26
doi: 10.1016/j.jmatprotec.2015.11.006
|
106 |
Gao M, Mei S W, Wang Z M, et al. Process and joint characterizations of laser-MIG hybrid welding of AZ31 magnesium alloy[J]. J. Mater. Process. Technol., 2012, 212: 1338
doi: 10.1016/j.jmatprotec.2012.01.011
|
107 |
Wu D J, Liu D H, Niu F Y, et al. Al-Cu alloy fabricated by novel laser-tungsten inert gas hybrid additive manufacturing[J]. Addit. Manuf., 2020, 32: 100954
|
108 |
Liu D H, Wu D J, Wang R Z, et al. Formation mechanism of Al-Zn-Mg-Cu alloy fabricated by laser-arc hybrid additive manufacturing: Microstructure evaluation and mechanical properties[J]. Addit. Manuf., 2022, 50: 102554
|
109 |
Wang Y F, Chen X Z, Shen Q K, et al. Effect of magnetic Field on the microstructure and mechanical properties of inconel 625 superalloy fabricated by wire arc additive manufacturing[J]. J. Manuf. Processses, 2021, 64: 10
doi: 10.1016/j.jmapro.2021.01.008
|
110 |
Yuan D, Shao S Q, Guo C H, et al. Grain refining of Ti-6Al-4V alloy fabricated by laser and wire additive manufacturing assisted with ultrasonic vibration[J]. Ultrason. Sonochem., 2021, 73: 105472
doi: 10.1016/j.ultsonch.2021.105472
|
111 |
Yang D Q, Wang X W, Peng Y, et al. Microstructure and properties of 316 L stainless steel fabricated by gas mental arc additive manufacturing with ultrasonic vibration treatment[J]. Mater. Rev., 2022, 36(1): 20120270
|
|
杨东青, 王小伟, 彭 勇 等. 超声冲击辅助熔化极电弧增材制造316L不锈钢的组织和性能研究[J]. 材料导报, 2022, 36(1): 20120270
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|