|
|
|
| Fractal Analysis of the Effect of Grain Boundary Character on Te-Induced Brittle Cracking in GH3535 Alloy |
YANG Du1, BAI Qin1( ), HU Yue1, ZHANG Yong1, LI Zhijun2, JIANG Li2, XIA Shuang1, ZHOU Bangxin1 |
1.Institute of Materials, Shanghai University, Shanghai 200072, China 2.Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China |
|
Cite this article:
YANG Du, BAI Qin, HU Yue, ZHANG Yong, LI Zhijun, JIANG Li, XIA Shuang, ZHOU Bangxin. Fractal Analysis of the Effect of Grain Boundary Character on Te-Induced Brittle Cracking in GH3535 Alloy. Acta Metall Sin, 2023, 59(2): 248-256.
|
|
|
Abstract GH3535 alloy has been used as the main structural material of molten salt reactor, which exhibits good high-temperature strength and excellent corrosion resistance to the molten salts. The intergranular cracking of GH3535 was detected after four years of operation of the molten salt reactor experiment, which was attributed to the inward diffusion of fission products Te. Grain boundary engineering (GBE) has been successfully applied to enhance the grain-boundary-related properties of the materials by increasing the frequency of low Σ coincidence site lattice grain boundaries and tailoring the grain boundary network. The in situ three-point bending test was used to assess the cracking properties of Non-GBE and GBE samples following Te infiltration at 700oC for 500 h. Fractal analysis statistics of various types of grain boundaries and cracks following in situ three-point bending tests were used. The result shows that the fractal dimension of cracks is in accord with that of the random grain boundaries (RGBs). The stronger the fracture resistance of materials, the lower the value of the RGB fractal dimension. The GH3535 alloy GBE samples with a bigger average size and more uniformly distributed twin grain clusters will have greater cracking resistance.
|
|
Received: 27 December 2021
|
|
|
| Fund: National Key Research and Development Program of China(2018YFE0122100);National Natural Science Foundation of China(51871144) |
About author: BAI Qin, associate professor, Tel: 18019370515, E-mail: baiqin31@shu.edu.cn
|
| 1 |
Vacik J, Naramoto H, Cervena J, et al. Absorption of molten fluoride salts in glassy carbon, pyrographite and Hastelloy B[J]. J. Nucl. Mater., 2001, 289: 308
doi: 10.1016/S0022-3115(01)00419-6
|
| 2 |
Rosenthal M W, Briggs R B, Haubenreich P N. Molten-salt reactor program semiannual progress report[R]. Tennessee: Oak Ridge National Lab., 1972: ORNL/TM-4782
|
| 3 |
Rosenthal M W, Haubenreich P N, Briggs R B. The development status of molten-salt breeder reactors[R]. Tennessee: Oak Ridge National Lab., 1972: ORNL-4812
|
| 4 |
Shimada M, Kokawa H, Wang Z J, et al. Optimization of grain boundary character distribution for intergranular corrosion resistant 304 stainless steel by twin-induced grain boundary engineering[J]. Acta Mater., 2002, 50: 2331
doi: 10.1016/S1359-6454(02)00064-2
|
| 5 |
Hu C L, Xia S, Li H, et al. Effect of grain boundary network on the intergranular stress corrosion cracking of 304 stainless steel[J]. Acta Metall. Sin., 2011, 47: 939
|
|
胡长亮, 夏 爽, 李 慧 等. 晶界网络特征对304不锈钢晶间应力腐蚀开裂的影响[J]. 金属学报, 2011, 47: 939
|
| 6 |
Michiuchi M, Kokawa H, Wang Z J, et al. Twin-induced grain boundary engineering for 316 austenitic stainless steel[J]. Acta Mater., 2006, 54: 5179
doi: 10.1016/j.actamat.2006.06.030
|
| 7 |
West E A, Was G S. IGSCC of grain boundary engineered 316L and 690 in supercritical water[J]. J. Nucl. Mater., 2009, 392: 264
doi: 10.1016/j.jnucmat.2009.03.008
|
| 8 |
Saito S, Kikuchi K, Hamaguchi D, et al. Corrosion-erosion test of SS316L grain boundary engineering material (GBEM) in lead bismuth flowing loop[J]. J. Nucl. Mater., 2012, 431: 91
doi: 10.1016/j.jnucmat.2011.11.040
|
| 9 |
Kobayashi S, Maruyama T, Tsurekawa S, et al. Grain boundary engineering based on fractal analysis for control of segregation-induced intergranular brittle fracture in polycrystalline nickel[J]. Acta Mater., 2012, 60: 6200
doi: 10.1016/j.actamat.2012.07.065
|
| 10 |
Bechtle S, Kumar M, Somerday B P, et al. Grain-boundary engineering markedly reduces susceptibility to intergranular hydrogen embrittlement in metallic materials[J]. Acta Mater., 2009, 57: 4148
doi: 10.1016/j.actamat.2009.05.012
|
| 11 |
Fu C T, Wang Y L, Chu X W, et al. Grain boundary engineering for control of tellurium diffusion in GH3535 alloy[J]. J. Nucl. Mater., 2017, 497: 76
doi: 10.1016/j.jnucmat.2017.10.052
|
| 12 |
Xia S, Li H, Liu T G, et al. Appling grain boundary engineering to Alloy 690 tube for enhancing intergranular corrosion resistance[J]. J. Nucl. Mater., 2011, 416: 303
doi: 10.1016/j.jnucmat.2011.06.017
|
| 13 |
Mandelbrot B B, Passoja D E, Paullay A J. Fractal character of fracture surfaces of metals[J]. Nature, 1984, 308: 721
doi: 10.1038/308721a0
|
| 14 |
Xu M J, Xu J J, Lu H, et al. Fractal and probability analysis of creep crack growth behavior in 2.25Cr-1.6W steel incorporating residual stresses[J]. Appl. Surf. Sci., 2015, 359: 73
doi: 10.1016/j.apsusc.2015.10.063
|
| 15 |
Dlouhý I, Strnadel B. The effect of crack propagation mechanism on the fractal dimension of fracture surfaces in steels[J]. Eng. Fract. Mech., 2008, 75: 726
doi: 10.1016/j.engfracmech.2007.03.038
|
| 16 |
Su H, Zhang Y G, Yan Z Q. Fractal analysis of microstructures and properties in ferrite—martensite steels[J]. Scr. Metall. Mater., 1991, 25: 651
doi: 10.1016/0956-716X(91)90108-D
|
| 17 |
Wang S Y, Song S Z. Corrosion morphology diagnosing syste of metallic materials in seawater based on fractal[J]. Acta Metall. Sin., 2004, 40: 94
|
|
王守琰, 宋诗哲. 基于分形的金属材料海水腐蚀形貌图像分析诊断系统[J]. 金属学报, 2004, 40: 94
|
| 18 |
Růžička Š, Haušild P. Fractal aspects of ductile and cleavage fracture surfaces[J]. Eng. Fract. Mech., 2010, 77: 744
doi: 10.1016/j.engfracmech.2009.11.009
|
| 19 |
Jiang X G, Chu W Y, Hsiao C M. Relationship between J1C and fractal value of fracture surface of ductile materials[J]. Acta Metall. Mater., 1994, 42: 105
doi: 10.1016/0956-7151(94)90052-3
|
| 20 |
Strnadel B, Byczanski P. Fractal-dimension limit of fracture surface in structural steels[J]. Kovove. Mater., 2001, 39: 93
|
| 21 |
Strnadel B, Ferfecki P, Židlík P. Statistical characteristics of fracture surfaces in high-strength steel drop weight tear test specimens[J]. Eng. Fract. Mech., 2013, 112-113: 1
doi: 10.1016/j.engfracmech.2013.10.001
|
| 22 |
Cao M S, Ren Q W. Fractal behavior of concrete crack and its application to damage assessment[J]. Key Eng. Mater., 2006, 312: 325
doi: 10.4028/www.scientific.net/KEM.312.325
|
| 23 |
Xian Y Q, Liu J H, Zhang C, et al. Fractal characteristics of fracture morphology of steels irradiated with high-energy ions[J]. J. Nucl. Mater., 2015, 461: 171
doi: 10.1016/j.jnucmat.2015.03.022
|
| 24 |
Pradhan S K, Prithiv T S, Mandal S. Through-thickness microstructural evolution during grain boundary engineering type thermomechanical processing and its implication on sensitization behavior in austenitic stainless steel[J]. Mater. Charact., 2017, 134: 134
doi: 10.1016/j.matchar.2017.10.014
|
| 25 |
Brandon D G. The structure of high-angle grain boundaries[J]. Acta Metall., 1966, 14: 1479
doi: 10.1016/0001-6160(66)90168-4
|
| 26 |
Zhou Y, Aust K T, Erb U, et al. Effects of grain boundary structure on carbide precipitation in 304L stainless steel[J]. Scr. Mater., 2001, 45: 49
doi: 10.1016/S1359-6462(01)00990-3
|
| 27 |
Bennett B W, Pickering H W. Effect of grain boundary structure on sensitization and corrosion of stainless steel[J]. Metall. Mater. Trans., 1987, 18A: 1117
|
| 28 |
Hu C L, Xia S, Li H, et al. Improving the intergranular corrosion resistance of 304 stainless steel by grain boundary network control[J]. Corros. Sci., 2011, 53: 1880
doi: 10.1016/j.corsci.2011.02.005
|
| 29 |
Zhang Z L, Xia S, Cao W, et al. Effects of grain boundary character on intergranular stress corrosion cracking initiation in 316 stainless steel[J]. Acta Metall. Sin., 2016, 52: 313
doi: 10.11900/0412.1961.2015.00285
|
|
张子龙, 夏 爽, 曹 伟 等. 晶界特征对316不锈钢沿晶应力腐蚀开裂裂纹萌生的影响[J]. 金属学报, 2016, 52: 313
doi: 10.11900/0412.1961.2015.00285
|
| 30 |
Cheng H W. Study on intergranular cracking behavior of GH3535 caused by Tellurium[D]. Shanghai: Chinese Academy of Sciences (Shanghai Institute of Applied Physics), 2015
|
|
程宏伟. Te导致GH3535合金晶间开裂行为的研究[D]. 上海: 中国科学院研究生院(上海应用物理研究所), 2015
|
| No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
| |
Shared |
|
|
|
|
| |
Discussed |
|
|
|
|