Please wait a minute...
Acta Metall Sin  2023, Vol. 59 Issue (2): 248-256    DOI: 10.11900/0412.1961.2021.00584
Research paper Current Issue | Archive | Adv Search |
Fractal Analysis of the Effect of Grain Boundary Character on Te-Induced Brittle Cracking in GH3535 Alloy
YANG Du1, BAI Qin1(), HU Yue1, ZHANG Yong1, LI Zhijun2, JIANG Li2, XIA Shuang1, ZHOU Bangxin1
1.Institute of Materials, Shanghai University, Shanghai 200072, China
2.Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
Cite this article: 

YANG Du, BAI Qin, HU Yue, ZHANG Yong, LI Zhijun, JIANG Li, XIA Shuang, ZHOU Bangxin. Fractal Analysis of the Effect of Grain Boundary Character on Te-Induced Brittle Cracking in GH3535 Alloy. Acta Metall Sin, 2023, 59(2): 248-256.

Download:  HTML  PDF(3043KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

GH3535 alloy has been used as the main structural material of molten salt reactor, which exhibits good high-temperature strength and excellent corrosion resistance to the molten salts. The intergranular cracking of GH3535 was detected after four years of operation of the molten salt reactor experiment, which was attributed to the inward diffusion of fission products Te. Grain boundary engineering (GBE) has been successfully applied to enhance the grain-boundary-related properties of the materials by increasing the frequency of low Σ coincidence site lattice grain boundaries and tailoring the grain boundary network. The in situ three-point bending test was used to assess the cracking properties of Non-GBE and GBE samples following Te infiltration at 700oC for 500 h. Fractal analysis statistics of various types of grain boundaries and cracks following in situ three-point bending tests were used. The result shows that the fractal dimension of cracks is in accord with that of the random grain boundaries (RGBs). The stronger the fracture resistance of materials, the lower the value of the RGB fractal dimension. The GH3535 alloy GBE samples with a bigger average size and more uniformly distributed twin grain clusters will have greater cracking resistance.

Key words:  GH3535 alloy      grain boundary engineering      three-point bending      crack      fractal dimension     
Received:  27 December 2021     
ZTFLH:  TG174.1  
Fund: National Key Research and Development Program of China(2018YFE0122100);National Natural Science Foundation of China(51871144)
About author:  BAI Qin, associate professor, Tel: 18019370515, E-mail: baiqin31@shu.edu.cn

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2021.00584     OR     https://www.ams.org.cn/EN/Y2023/V59/I2/248

Fig.1  Schematic of the fractal dimension of the grain boundary by the box counting method (η—square box size)
Fig.2  Orientation image microscopy (OIM) maps of different types of grain boundaries in Non-GBE (NS) (a) and GBE (GS) (b) specimens (GBE—grain boundary engineering, RGB—random grain boundary)
SpecimenLength fraction of grain boundary / %d / μmD / μmD / d
Σ3Σ9 + Σ27RGBLow-ΣCSL
NS49.820.7949.1350.8736.9077.312.10
GS63.329.9726.4673.5437.11121.643.28
Table 1  Grain boundary character distribution (GBCD), and statistics of mean dimensions of grains and grain-clusters of NS and GS specimens
Fig.3  OIM maps of different types of grain boundaries (a-e) and corresponding SEM images of cracks (f-j) of NS-1 (a, f), NS-2 (b, g), NS-3(c, h), NS-4 (d, i), and NS-5 (e, j) observation regions in NS specimen
Fig.4  OIM maps of different types of grain boundaries (a-e) and corresponding SEM images of cracks (f-j) of GS-1 (a, f), GS-2 (b, g), GS-3(c, h), GS-4 (d, i), and GS-5 (e, j) observation regions in GS specimen
Fig.5  Histogram of GBCD of obsearvation regions in NS (a) and GS (b) specimens
Fig.6  Histogram of the fractal dimension of different types of grain boundaries and cracks in NS (a) and GS (b) specimens
Fig.7  OIM map of different types of grain boundaries (a) and corresponding SEM image (b) of NS specimen
Fig.8  OIM map of different types of grain boundaries (a) and corresponding SEM image (b) of GS specimen
Fig.9  Maps of grain area distribution in NS (a) and GS (b) specimens
Fig.10  Histogram of the fractal dimension of twin grain cluster (GC) and non twin grain cluster (NGC) regions in NS (a) and GS (b) specimens
1 Vacik J, Naramoto H, Cervena J, et al. Absorption of molten fluoride salts in glassy carbon, pyrographite and Hastelloy B[J]. J. Nucl. Mater., 2001, 289: 308
doi: 10.1016/S0022-3115(01)00419-6
2 Rosenthal M W, Briggs R B, Haubenreich P N. Molten-salt reactor program semiannual progress report[R]. Tennessee: Oak Ridge National Lab., 1972: ORNL/TM-4782
3 Rosenthal M W, Haubenreich P N, Briggs R B. The development status of molten-salt breeder reactors[R]. Tennessee: Oak Ridge National Lab., 1972: ORNL-4812
4 Shimada M, Kokawa H, Wang Z J, et al. Optimization of grain boundary character distribution for intergranular corrosion resistant 304 stainless steel by twin-induced grain boundary engineering[J]. Acta Mater., 2002, 50: 2331
doi: 10.1016/S1359-6454(02)00064-2
5 Hu C L, Xia S, Li H, et al. Effect of grain boundary network on the intergranular stress corrosion cracking of 304 stainless steel[J]. Acta Metall. Sin., 2011, 47: 939
胡长亮, 夏 爽, 李 慧 等. 晶界网络特征对304不锈钢晶间应力腐蚀开裂的影响[J]. 金属学报, 2011, 47: 939
6 Michiuchi M, Kokawa H, Wang Z J, et al. Twin-induced grain boundary engineering for 316 austenitic stainless steel[J]. Acta Mater., 2006, 54: 5179
doi: 10.1016/j.actamat.2006.06.030
7 West E A, Was G S. IGSCC of grain boundary engineered 316L and 690 in supercritical water[J]. J. Nucl. Mater., 2009, 392: 264
doi: 10.1016/j.jnucmat.2009.03.008
8 Saito S, Kikuchi K, Hamaguchi D, et al. Corrosion-erosion test of SS316L grain boundary engineering material (GBEM) in lead bismuth flowing loop[J]. J. Nucl. Mater., 2012, 431: 91
doi: 10.1016/j.jnucmat.2011.11.040
9 Kobayashi S, Maruyama T, Tsurekawa S, et al. Grain boundary engineering based on fractal analysis for control of segregation-induced intergranular brittle fracture in polycrystalline nickel[J]. Acta Mater., 2012, 60: 6200
doi: 10.1016/j.actamat.2012.07.065
10 Bechtle S, Kumar M, Somerday B P, et al. Grain-boundary engineering markedly reduces susceptibility to intergranular hydrogen embrittlement in metallic materials[J]. Acta Mater., 2009, 57: 4148
doi: 10.1016/j.actamat.2009.05.012
11 Fu C T, Wang Y L, Chu X W, et al. Grain boundary engineering for control of tellurium diffusion in GH3535 alloy[J]. J. Nucl. Mater., 2017, 497: 76
doi: 10.1016/j.jnucmat.2017.10.052
12 Xia S, Li H, Liu T G, et al. Appling grain boundary engineering to Alloy 690 tube for enhancing intergranular corrosion resistance[J]. J. Nucl. Mater., 2011, 416: 303
doi: 10.1016/j.jnucmat.2011.06.017
13 Mandelbrot B B, Passoja D E, Paullay A J. Fractal character of fracture surfaces of metals[J]. Nature, 1984, 308: 721
doi: 10.1038/308721a0
14 Xu M J, Xu J J, Lu H, et al. Fractal and probability analysis of creep crack growth behavior in 2.25Cr-1.6W steel incorporating residual stresses[J]. Appl. Surf. Sci., 2015, 359: 73
doi: 10.1016/j.apsusc.2015.10.063
15 Dlouhý I, Strnadel B. The effect of crack propagation mechanism on the fractal dimension of fracture surfaces in steels[J]. Eng. Fract. Mech., 2008, 75: 726
doi: 10.1016/j.engfracmech.2007.03.038
16 Su H, Zhang Y G, Yan Z Q. Fractal analysis of microstructures and properties in ferrite—martensite steels[J]. Scr. Metall. Mater., 1991, 25: 651
doi: 10.1016/0956-716X(91)90108-D
17 Wang S Y, Song S Z. Corrosion morphology diagnosing syste of metallic materials in seawater based on fractal[J]. Acta Metall. Sin., 2004, 40: 94
王守琰, 宋诗哲. 基于分形的金属材料海水腐蚀形貌图像分析诊断系统[J]. 金属学报, 2004, 40: 94
18 Růžička Š, Haušild P. Fractal aspects of ductile and cleavage fracture surfaces[J]. Eng. Fract. Mech., 2010, 77: 744
doi: 10.1016/j.engfracmech.2009.11.009
19 Jiang X G, Chu W Y, Hsiao C M. Relationship between J1C and fractal value of fracture surface of ductile materials[J]. Acta Metall. Mater., 1994, 42: 105
doi: 10.1016/0956-7151(94)90052-3
20 Strnadel B, Byczanski P. Fractal-dimension limit of fracture surface in structural steels[J]. Kovove. Mater., 2001, 39: 93
21 Strnadel B, Ferfecki P, Židlík P. Statistical characteristics of fracture surfaces in high-strength steel drop weight tear test specimens[J]. Eng. Fract. Mech., 2013, 112-113: 1
doi: 10.1016/j.engfracmech.2013.10.001
22 Cao M S, Ren Q W. Fractal behavior of concrete crack and its application to damage assessment[J]. Key Eng. Mater., 2006, 312: 325
doi: 10.4028/www.scientific.net/KEM.312.325
23 Xian Y Q, Liu J H, Zhang C, et al. Fractal characteristics of fracture morphology of steels irradiated with high-energy ions[J]. J. Nucl. Mater., 2015, 461: 171
doi: 10.1016/j.jnucmat.2015.03.022
24 Pradhan S K, Prithiv T S, Mandal S. Through-thickness microstructural evolution during grain boundary engineering type thermomechanical processing and its implication on sensitization behavior in austenitic stainless steel[J]. Mater. Charact., 2017, 134: 134
doi: 10.1016/j.matchar.2017.10.014
25 Brandon D G. The structure of high-angle grain boundaries[J]. Acta Metall., 1966, 14: 1479
doi: 10.1016/0001-6160(66)90168-4
26 Zhou Y, Aust K T, Erb U, et al. Effects of grain boundary structure on carbide precipitation in 304L stainless steel[J]. Scr. Mater., 2001, 45: 49
doi: 10.1016/S1359-6462(01)00990-3
27 Bennett B W, Pickering H W. Effect of grain boundary structure on sensitization and corrosion of stainless steel[J]. Metall. Mater. Trans., 1987, 18A: 1117
28 Hu C L, Xia S, Li H, et al. Improving the intergranular corrosion resistance of 304 stainless steel by grain boundary network control[J]. Corros. Sci., 2011, 53: 1880
doi: 10.1016/j.corsci.2011.02.005
29 Zhang Z L, Xia S, Cao W, et al. Effects of grain boundary character on intergranular stress corrosion cracking initiation in 316 stainless steel[J]. Acta Metall. Sin., 2016, 52: 313
doi: 10.11900/0412.1961.2015.00285
张子龙, 夏 爽, 曹 伟 等. 晶界特征对316不锈钢沿晶应力腐蚀开裂裂纹萌生的影响[J]. 金属学报, 2016, 52: 313
doi: 10.11900/0412.1961.2015.00285
30 Cheng H W. Study on intergranular cracking behavior of GH3535 caused by Tellurium[D]. Shanghai: Chinese Academy of Sciences (Shanghai Institute of Applied Physics), 2015
程宏伟. Te导致GH3535合金晶间开裂行为的研究[D]. 上海: 中国科学院研究生院(上海应用物理研究所), 2015
[1] LU Nannan, GUO Yimo, YANG Shulin, LIANG Jingjing, ZHOU Yizhou, SUN Xiaofeng, LI Jinguo. Formation Mechanisms of Hot Cracks in Laser Additive Repairing Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1243-1252.
[2] JIANG He, NAI Qiliang, XU Chao, ZHAO Xiao, YAO Zhihao, DONG Jianxin. Sensitive Temperature and Reason of Rapid Fatigue Crack Propagation in Nickel-Based Superalloy[J]. 金属学报, 2023, 59(9): 1190-1200.
[3] MU Yahang, ZHANG Xue, CHEN Ziming, SUN Xiaofeng, LIANG Jingjing, LI Jinguo, ZHOU Yizhou. Modeling of Crack Susceptibility of Ni-Based Superalloy for Additive Manufacturing via Thermodynamic Calculation and Machine Learning[J]. 金属学报, 2023, 59(8): 1075-1086.
[4] HAN Weizhong, LU Yan, ZHANG Yuheng. Mechanism of Ductile-to-Brittle Transition in Body-Centered-Cubic Metals:A Brief Review[J]. 金属学报, 2023, 59(3): 335-348.
[5] CHANG Litao. Corrosion and Stress Corrosion Crack Initiation in the Machined Surfaces of Austenitic Stainless Steels in Pressurized Water Reactor Primary Water: Research Progress and Perspective[J]. 金属学报, 2023, 59(2): 191-204.
[6] PENG Zhiqiang, LIU Qian, GUO Dongwei, ZENG Zihang, CAO Jianghai, HOU Zibing. Independent Change Law of Mold Heat Transfer in Continuous Casting Based on Big Data Mining[J]. 金属学报, 2023, 59(10): 1389-1400.
[7] QI Zhao, WANG Bin, ZHANG Peng, LIU Rui, ZHANG Zhenjun, ZHANG Zhefeng. Effects of Stress Ratio on the Fatigue Crack Growth Rate Under Steady State of Selective Laser Melted TC4 Alloy with Defects[J]. 金属学报, 2023, 59(10): 1411-1418.
[8] ZHU Guoliang, KONG Decheng, ZHOU Wenzhe, HE Jian, DONG Anping, SHU Da, SUN Baode. Research Progress on the Crack Formation Mechanism and Cracking-Free Design of γ' Phase Strengthened Nickel-Based Superalloys Fabricated by Selective Laser Melting[J]. 金属学报, 2023, 59(1): 16-30.
[9] MA Zhimin, DENG Yunlai, LIU Jia, LIU Shengdan, LIU Honglei. Effect of Quenching Rate on Stress Corrosion Cracking Susceptibility of 7136 Aluminum Alloy[J]. 金属学报, 2022, 58(9): 1118-1128.
[10] ZHOU Hongwei, GAO Jianbing, SHEN Jiaming, ZHAO Wei, BAI Fengmei, HE Yizhu. Twin Boundary Evolution Under Low-Cycle Fatigue of C-HRA-5 Austenitic Heat-Resistant Steel at High Temperature[J]. 金属学报, 2022, 58(8): 1013-1023.
[11] YANG Qinzheng, YANG Xiaoguang, HUANG Weiqing, SHI Duoqi. Propagation Behaviors of Small Cracks in Powder Metallurgy Nickel-Based Superalloy FGH4096[J]. 金属学报, 2022, 58(5): 683-694.
[12] YU Chun, XU Jijin, WEI Xiao, LU Hao. Research Status of Ductility-Dip Crack Occurring in Nuclear Nickel-Based Welding Materials[J]. 金属学报, 2022, 58(4): 529-540.
[13] LI Xifeng, LI Tianle, AN Dayong, WU Huiping, CHEN Jieshi, CHEN Jun. Research Progress of Titanium Alloys and Their Diffusion Bonding Fatigue Characteristics[J]. 金属学报, 2022, 58(4): 473-485.
[14] GUO Haohan, YANG Jie, LIU Fang, LU Rongsheng. Constraint Related Fatigue Crack Initiation Life of GH4169 Superalloy[J]. 金属学报, 2022, 58(12): 1633-1644.
[15] WANG Xue, LI Yong, WANG Jiaqing, HU Lei. Effect of High Temperature Ageing on Microstructure and Stress-Relief Cracking Susceptibility of Coarse Grain Heat Affected Zone in T23 steel[J]. 金属学报, 2021, 57(6): 736-748.
No Suggested Reading articles found!