Please wait a minute...
Acta Metall Sin  2023, Vol. 59 Issue (2): 257-266    DOI: 10.11900/0412.1961.2021.00217
Research paper Current Issue | Archive | Adv Search |
Microstructure and Properties of AZ61 Ultra-Fine Grained Magnesium Alloy Prepared by Mechanical Milling and Powder Metallurgy Processing
ZHU Yunpeng1,2,3(), QIN Jiayu1,3, WANG Jinhui1,3, MA Hongbin1,3, JIN Peipeng1,3, LI Peijie2
1.Qinghai Provincial Key Laboratory of New Light Alloys, Qinghai University, Xining 810016, China
2.Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China
3.Qinghai Provincial Engineering Research Center of High Performance Light Metal Alloys and Forming, Qinghai University, Xining 810016, China
Cite this article: 

ZHU Yunpeng, QIN Jiayu, WANG Jinhui, MA Hongbin, JIN Peipeng, LI Peijie. Microstructure and Properties of AZ61 Ultra-Fine Grained Magnesium Alloy Prepared by Mechanical Milling and Powder Metallurgy Processing. Acta Metall Sin, 2023, 59(2): 257-266.

Download:  HTML  PDF(3906KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The Mg-Al series alloys are well known for their low density, high specific strength, and superior damping capability. However, the application of Mg-Al series alloys is often limited by inadequate mechanical properties. To fulfill the growing demand for lightweight structural components, ultra-fine grained magnesium alloys with superior mechanical properties have gained attention. Mechanical milling and powder metallurgy were used to produce the AZ61 ultra-fine grained magnesium alloy with super-high tensile characteristics. The effects of mechanical milling on the grain size, precipitates, texture, and tensile properties of AZ61 ultra-fine grained magnesium alloy were investigated. The grain size of the AZ61 alloy produced by mechanical milling and powder metallurgy was reduced from 0.91 μm to 0.68 μm when compared to that produced by non-mechanical milling. Mechanical milling accelerated the dynamic precipitation and refining of Mg17Al12 while weakening the basal texture. The yield strength, tensile strength, and elongation of AZ61 ultra-fine grained magnesium alloy are 393.1 MPa, 431.9 MPa, and 8.5%, respectively, which are superior to the AZ61 alloy produced by other processes. The theoretical grain refinement and Orowan strengthening mechanisms of AZ61 alloy were calculated, and it shows that the grain refinement strengthening contributes more than 90% of the yield strength. The Orowan strengthening was overestimated when Mg17Al12 was distributed at grain boundaries. The weakening of basal texture resulted in a reduction in yield strength. The fracture mechanism of the AZ61 alloy without mechanical milling is dominated by oxidation on the surface of the AZ61 powder, which initiates interparticle debonding. The fracture mechanism of the AZ61 alloy with mechanical milling is dominated by deformation mismatch between the deboned powders and the stronger bonded powders, and the increase in the amount of Mg17Al12 along the grain boundary.

Key words:  mechanical milling      powder metallurgy      AZ61 ultrafine-grained magnesium alloy      dynamic precipitation      strengthening mechanism     
Received:  19 May 2021     
ZTFLH:  TB31  
Fund: Qinghai Provincial Science and Technology Program(2020-ZJ-707)
About author:  ZHU Yunpeng, Tel: (0971)5368605, E-mail: zhu-yp@qhu.edu.cn

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2021.00217     OR     https://www.ams.org.cn/EN/Y2023/V59/I2/257

Fig.1  Schematic of tensile test sample (unit: mm)
Fig.2  SEM images of raw AZ61 powder (a), mechanically milled AZ61 powder (b); and OM images of sintered raw AZ61 powder (c), sintered mechanically milled AZ61 powder (d)
Fig.3  XRD spectra of AZ61 powder (Inset shows the locally high magnification of Fig.3a) (a) and sintered AZ61 alloy (b)
Fig.4  XRD spectra (a) and SEM images of extruded AZ61 alloy without (b) and with (c) mechanical milling, and EDS elemental maps of Mg (d), Al (e), and Zn (f) in Fig.4c
Extruded AZ61 alloyGrain size / μmDiameter of Mg17Al12 / nmVolume fraction of Mg17Al12 / %
Without mechanical milling0.912306.6
With mechanical milling0.6817011.7
Table 1  Grain size, volume fraction of Mg17Al12, and size of Mg17Al12 of extruded AZ61 alloy
Fig.5  Low (a, b) and high (c, d) magnified TEM images of extruded AZ61 alloy without (a, c) and with (b, d) mechanical milling (Inset in Fig.5d shows the selected area electron diffraction pattern of the precipitates at grain boundaries)
Fig.6  {0001} and {101ˉ0} pole figures of extruded AZ61 alloy without (a) and with (b) mechanical milling (ED—extruded direction, TD—transverse direction)
Fig.7  Tensile stress-strain curves of extruded AZ61 alloy at room temperature
Fig.8  Comparisons of mechanical properties of this work and other reported[1,7,10,23-27] AZ61 alloys at room temperature (UTS—ultimate tensile strength; YS—yield strength; MM—mechanically milled; PM—powder metallurgy; FSP—friction stir process; MDF—multi-directionally forged; DMD—disintegrated metal deposition; ED—extruded; ECAP—equal channel angular pressing; HRS—hot rotary swaging)
(a) UTS (b) YS
Fig.9  SEM fractographs of extruded AZ61 alloy without (a-c) and with (e, f) mechanical milling, and EDS along the line in Fig.9c (d)
1 Luo X C, Zhang D T, Zhang W W, et al. Tensile properties of AZ61 magnesium alloy produced by multi-pass friction stir processing: Effect of sample orientation[J]. Mater. Sci. Eng., 2018, A725: 398
2 Lee J U, Kim S H, Kim Y J, et al. Effects of homogenization time on aging behavior and mechanical properties of AZ91 alloy[J]. Mater. Sci. Eng., 2018, A714: 49
3 Kang J W, Sun X F, Deng K K, et al. High strength Mg-9Al serial alloy processed by slow extrusion[J]. Mater. Sci. Eng., 2017, A697: 211
4 Kim W J, Jeong H G, Jeong H T. Achieving high strength and high ductility in magnesium alloys using severe plastic deformation combined with low-temperature aging[J]. Scr. Mater., 2009, 61: 1040
doi: 10.1016/j.scriptamat.2009.08.020
5 Xu B Q, Sun J P, Yang Z Q, et al. Microstructure and anisotropic mechanical behavior of the high-strength and ductility AZ91 Mg alloy processed by hot extrusion and multi-pass RD-ECAP[J]. Mater. Sci. Eng., 2020, A780: 139191
6 Zhang Y, Shao J B, Chen T, et al. Deformation mechanism and dynamic recrystallization of Mg-5.6Gd-0.8Zn alloy during multi-directional forging[J]. Acta Metall. Sin., 2020, 56: 723
doi: 10.11900/0412.1961.2019.00292
张 阳, 邵建波, 陈 韬 等. Mg-5.6Gd-0.8Zn合金多向锻造过程中的变形机制及动态再结晶[J]. 金属学报, 2020, 56: 723
7 Luo X C, Kang L M, Liu H L, et al. Enhancing mechanical properties of AZ61 magnesium alloy via friction stir processing: Effect of processing parameters[J]. Mater. Sci. Eng., 2020, A797: 139945
8 Sun W T, Qiao X G, Zheng M Y, et al. Achieving ultra-high hardness of nanostructured Mg-8.2Gd-3.2Y-1.0Zn-0.4Zr alloy produced by a combination of high pressure torsion and ageing treatment[J]. Scr. Mater., 2018, 155: 21
doi: 10.1016/j.scriptamat.2018.06.009
9 Tang L L, Zhao Y H, Islamgaliev R K, et al. Enhanced strength and ductility of AZ80 Mg alloys by spray forming and ECAP[J]. Mater. Sci. Eng., 2016, A670: 280
10 Miura H, Maruoka T, Jonas J J. Effect of ageing on microstructure and mechanical properties of a multi-directionally forged Mg-6Al-1Zn alloy[J]. Mater. Sci. Eng., 2013, A563: 53
11 Qin J Y, Li X Q, Jin P P, et al. Microstructure and mechanical properties of carbon nanotubes (CNTs) reinforced AZ91 matrix composite[J]. Acta Metall. Sin., 2019, 55: 1537
doi: 10.11900/0412.1961.2019.00173
覃嘉宇, 李小强, 金培鹏 等. 碳纳米管(CNTs)增强AZ91镁基复合材料组织与力学性能研究[J]. 金属学报, 2019, 55: 1537
doi: 10.11900/0412.1961.2019.00173
12 Inoue A, Kawamura Y, Matsushita M, et al. Novel hexagonal structure and ultrahigh strength of magnesium solid solution in the Mg-Zn-Y system[J]. J. Mater. Res., 2001, 16: 1894
doi: 10.1557/JMR.2001.0260
13 Taleghani M A J, Torralba J M. The microstructural evolution of a pre-alloyed AZ91 magnesium alloy powder through high-energy milling and subsequent isothermal annealing[J]. Mater. Lett., 2013, 98: 182
doi: 10.1016/j.matlet.2013.02.052
14 Yu H, Sun Y, Hu L X, et al. The effect of Ti addition on microstructure evolution of AZ61 Mg alloy during mechanical milling[J]. J. Alloys Compd., 2017, 704: 537
doi: 10.1016/j.jallcom.2017.02.029
15 Zhang H, Zha M, Tian T, et al. Prominent role of high-volume fraction Mg17Al12 dynamic precipitations on multimodal microstructure formation and strength-ductility synergy of Mg-Al-Zn alloys processed by hard-plate rolling (HPR)[J]. Mater. Sci. Eng., 2021, A808: 140920
16 Ma X L, Prameela S E, Yi P, et al. Dynamic precipitation and recrystallization in Mg-9wt.%Al during equal-channel angular extrusion: A comparative study to conventional aging[J]. Acta Mater., 2019, 172: 185
doi: 10.1016/j.actamat.2019.04.046
17 Wei J S, Jiang S N, Chen Z Y, et al. Increasing strength and ductility of a Mg-9Al alloy by dynamic precipitation assisted grain refinement during multi-directional forging[J]. Mater. Sci. Eng., 2020, A780: 139192
18 Zhu J, Liu J X, Wang Y, et al. Super-high strength Mg-7.5Al-0.8Zn alloy prepared by rapidly solidified powder metallurgy and low temperature extrusion[J]. Adv. Eng. Mater., 2018, 20: 1700712
doi: 10.1002/adem.201700712
19 Das S K, Brodusch N, Gauvin R, et al. Grain boundary diffusion of Al in Mg[J]. Scr. Mater., 2014, 80: 41
doi: 10.1016/j.scriptamat.2014.02.008
20 Mondet M, Barraud E, Lemonnier S, et al. Microstructure and mechanical properties of AZ91 magnesium alloy developed by spark plasma sintering[J]. Acta Mater., 2016, 119: 55
doi: 10.1016/j.actamat.2016.08.006
21 Li X, Jiao F, Al-Samman T, et al. Influence of second-phase precipitates on the texture evolution of Mg-Al-Zn alloys during hot deformation[J]. Scr. Mater., 2012, 66: 159
doi: 10.1016/j.scriptamat.2011.10.028
22 Sun X F, Wang C J, Deng K K, et al. High strength SiCp/AZ91 composite assisted by dynamic precipitated Mg17Al12 phase[J]. J. Alloys Compd., 2018, 732: 328
doi: 10.1016/j.jallcom.2017.10.164
23 Nguyen Q B, Chua Y H D, Tun K S, et al. Effect of addition of Nano-Al2O3 and copper particulates and heat treatment on the tensile response of AZ61 magnesium alloy[J]. J. Eng. Mater. Technol., 2013, 135: 031004
24 Hilšer O, Rusz S, Tański T, et al. Mechanical properties and structure of AZ61 magnesium alloy processed by equal channel angular pressing[J]. IOP Conf. Ser.: Mater. Sci. Eng., 2017, 179: 012028
25 Zhang C C, Wang H Y, Zha M, et al. Microstructure and tensile properties of AZ61 alloy sheets processed by high-ratio extrusion with subsequent direct aging treatment[J]. Materials, 2018, 11: 895
doi: 10.3390/ma11060895
26 Li J Q, Liu J, Cui Z S. Microstructures and mechanical properties of AZ61 magnesium alloy after isothermal multidirectional forging with increasing strain rate[J]. Mater. Sci. Eng., 2015, A643: 32
27 Rong L, Nie Z R, Liang X P. Microstructure and mechanical properties of AZ61 alloy processed by rotary swaging[J]. Rare Met. Mater. Eng., 2020, 49: 3479
荣 莉, 聂祚仁, 梁霄鹏. 热旋锻对AZ61镁合金显微组织与力学性能的影响[J]. 稀有金属材料与工程, 2020, 49: 3479
28 Ono N, Nowak R, Miura S. Effect of deformation temperature on Hall-Petch relationship registered for polycrystalline magnesium[J]. Mater. Lett., 2004, 58: 39
doi: 10.1016/S0167-577X(03)00410-5
29 Zhang Z, Chen D L. Consideration of Orowan strengthening effect in particulate-reinforced metal matrix nanocomposites: A model for predicting their yield strength[J]. Scr. Mater., 2006, 54: 1321
doi: 10.1016/j.scriptamat.2005.12.017
30 Kim W J, Lee J B, Kim W Y, et al. Microstructure and mechanical properties of Mg-Al-Zn alloy sheets severely deformed by asymmetrical rolling[J]. Scr. Mater., 2007, 56: 309
doi: 10.1016/j.scriptamat.2006.09.034
31 Zhu T P, Chen Z W, Gao W. Effect of cooling conditions during casting on fraction of β-Mg17Al12 in Mg-9Al-1Zn cast alloy[J]. J. Alloys Compd., 2010, 501: 291
doi: 10.1016/j.jallcom.2010.04.090
[1] BAI Jiaming, LIU Jiantao, JIA Jian, ZHANG Yiwen. Creep Properties and Solute Atomic Segregation of High-W and High-Ta Type Powder Metallurgy Superalloy[J]. 金属学报, 2023, 59(9): 1230-1242.
[2] XU Lei, TIAN Xiaosheng, WU Jie, LU Zhengguan, YANG Rui. Microstructure and Mechanical Properties of Inconel 718 Powder Alloy Prepared by Hot Isostatic Pressing[J]. 金属学报, 2023, 59(5): 693-702.
[3] MA Guonan, ZHU Shize, WANG Dong, XIAO Bolv, MA Zongyi. Aging Behaviors and Mechanical Properties of SiC/Al-Zn-Mg-Cu Composites[J]. 金属学报, 2023, 59(12): 1655-1664.
[4] CHEN Jilin, FENG Guanghong, MA Honglei, YANG Dong, LIU Wei. Microstructure, Mechanical Properties, and Strengthening Mechanism of Cr-Mo Microalloy Cold Heading Steel[J]. 金属学报, 2022, 58(9): 1189-1198.
[5] YANG Qinzheng, YANG Xiaoguang, HUANG Weiqing, SHI Duoqi. Propagation Behaviors of Small Cracks in Powder Metallurgy Nickel-Based Superalloy FGH4096[J]. 金属学报, 2022, 58(5): 683-694.
[6] WANG Hongwei, HE Zhufeng, JIA Nan. Microstructure and Mechanical Properties of a FeMnCoCr High-Entropy Alloy with Heterogeneous Structure[J]. 金属学报, 2021, 57(5): 632-640.
[7] LIU Chenxi, MAO Chunliang, CUI Lei, ZHOU Xiaosheng, YU Liming, LIU Yongchang. Recent Progress in Microstructural Control and Solid-State Welding of Reduced Activation Ferritic/Martensitic Steels[J]. 金属学报, 2021, 57(11): 1521-1538.
[8] WEN Bin, TIAN Yongjun. Mechanical Behaviors of Nanotwinned Metals and Nanotwinned Covalent Materials[J]. 金属学报, 2021, 57(11): 1380-1395.
[9] LUAN Xiaosheng, LIANG Zhiqiang, ZHAO Wenxiang, SHI Guihong, LI Hongwei, LIU Xinli, ZHU Guorong, WANG Xibin. Strengthening Mechanism of 45CrNiMoVA Steel by Pulse Magnetic Treatment[J]. 金属学报, 2021, 57(10): 1272-1280.
[10] BI Sheng, LI Zechen, SUN Haixia, SONG Baoyong, LIU Zhenyu, XIAO Bolv, MA Zongyi. Microstructure and Mechanical Properties of Carbon Nanotubes-Reinforced 7055Al Composites Fabricated by High-Energy Ball Milling and Powder Metallurgy Processing[J]. 金属学报, 2021, 57(1): 71-81.
[11] HAO Zhibo, GE Changchun, LI Xinggang, TIAN Tian, JIA Chonglin. Effect of Heat Treatment on Microstructure and Mechanical Properties of Nickel-Based Powder Metallurgy Superalloy Processed by Selective Laser Melting[J]. 金属学报, 2020, 56(8): 1133-1143.
[12] ZHOU Xia,LIU Xiaoxia. Mechanical Properties and Strengthening Mechanism of Graphene Nanoplatelets Reinforced Magnesium Matrix Composites[J]. 金属学报, 2020, 56(2): 240-248.
[13] XU Shuai, SUN Xinjun, LIANG Xiaokai, LIU Jun, YONG Qilong. Effect of Hot Rolling Deformation on Microstructure and Mechanical Properties of a High-Ti Wear-Resistant Steel[J]. 金属学报, 2020, 56(12): 1581-1591.
[14] ZHANG Guoqing,ZHANG Yiwen,ZHENG Liang,PENG Zichao. Research Progress in Powder Metallurgy Superalloys and Manufacturing Technologies for Aero-Engine Application[J]. 金属学报, 2019, 55(9): 1133-1144.
[15] Zhengguan LU,Jie WU,Lei XU,Xiaoxiao CUI,Rui YANG. Ring Rolling Forming and Properties of Ti2AlNb Special Shaped Ring Prepared by Powder Metallurgy[J]. 金属学报, 2019, 55(6): 729-740.
No Suggested Reading articles found!