Thermoelectric Properties of P-Type CeyFe3CoSb12 Thermoelectric Materials and Coatings Doped with La
LI Dou, XU Changjiang, LI Xuguang, LI Shuangming(), ZHONG Hong
State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an 710072, China
Cite this article:
LI Dou, XU Changjiang, LI Xuguang, LI Shuangming, ZHONG Hong. Thermoelectric Properties of P-Type CeyFe3CoSb12 Thermoelectric Materials and Coatings Doped with La. Acta Metall Sin, 2023, 59(2): 237-247.
During the use of fossil fuels, about two-thirds of the energy that is discharged into the environment in the form of waste heat are barely utilized and cause considerable environmental pollution and intense CO2 emission. Thermoelectric materials directly convert heat energy to electricity, thus, improving the utilization efficiency of fossil energy and reducing environmental pollution. Skutterudite CoSb3 has been widely studied as one of the materials for thermoelectric applications in the middle-temperature region. CoSb3-based skutterudites are narrow bandgap semiconductors with a high-electrical conductivity and Seebeck coefficient. Meanwhile, thermoelectric performance of bulk CoSb3 has been considerably improved via doping and design of nano structures. Herein, P-type CoSb3 was synthesized via melt-annealing-spark plasma sintering process. The effect of Ce-doping content on microstructure and thermoelectric properties of CoSb3 and the effect of La doping on decoupled thermoelectric performance were studied. Compared with Ce0.8Fe3CoSb12, the Seebeck coefficient of La0.1Ce0.8Fe3CoSb12 increased with temperature, electrical resistivity decreased from 25 μΩ·m to 15 μΩ·m at 300 K, and power factor simultaneously increased from 480 μW/(m·K2) to 642 μW/(m·K2) at 673 K. The La0.1Ce0.8Fe3CoSb12 thermal conductivity decreased with La or Ce doping to ~1 W/(m·K), and the corresponding thermoelectric figure of merit reached 0.45 at 723 K in the temperature range from 300 K to 723 K. Al-Ni coating was deposited on the sintered bulk skutterudite via magnetron sputtering method. It was demonstrated that the coating did not degrade the thermoelectric performance, while the coating elements were uniformly distributed across the sintered bulk La0.1Ce0.8Fe3CoSb12. The welding behavior of P-type La0.1Ce0.8Fe3CoSb12 was studied using a Ag40Cu60 solder and a Mo50Cu50 electrode sheet. The interface of this thermoelectric material was prone to cracking and pore formation, while the elements at the interface have not demonstrated remarkable diffusion. This indicates an efficiency of the interface bonding, which may be used in the fabrication technologies of thermoelectric devices.
Fig.1 XRD spectra of LaxCeyFe3CoSb12 thermoelectric material before (a) and after (b) spark plasma sintering (SPS)
Fig.2 SEM image (a) and corresponding EDS maps (b-f) of the SPSed bulk La0.1Ce0.8Fe3CoSb12 thermoelectric material
Point
Co
Sb
Fe
Ce
La
Total
1
1.56
73.55
24.77
0.12
0.00
100
2
3.43
68.50
19.01
7.30
1.76
100
3
6.41
73.26
16.67
2.94
0.72
100
4
5.73
71.95
18.03
3.14
1.15
100
Table 1 EDS analysis results of points 1-4 in Fig.2a
Fig.3 Electrical performance curves of the SPSed bulk LaxCeyFe3CoSb12 thermoelectric material (a) Seebeck coefficient (b) electrical resistivity (c) power factor
Compound
Hall
Carrier
Carrier
coefficient
mobility
concentration
10-2 cm·C-1
cm2·V-1·s-1
1020 cm-3
Ce0.8Fe3CoSb12
1.63
6.13
3.83
Ce0.9Fe3CoSb12
2.52
58.30
2.48
La0.1Ce0.8Fe3CoSb12
3.58
24.30
1.74
Table 2 Electrical properties of the SPSed bulk LaxCey-Fe3CoSb12 thermoelectrical material at room temperature
Fig.4 Heat transport performance curves of the SPSed bulk LaxCeyFe3CoSb12 thermoelectric material (a) total thermal conductivity (Kt) (b) lattice thermal conductivity (KL) (c) carrier thermal conductivity (Ke) (d) the ratio of KL / Kt
Fig.5 TEM analyses of the SPSed bulk La0.1Ce0.8Fe3CoSb12 thermoelectric material (a) low-magnification bright-field TEM image (b) enlarged view of boxed region b in Fig.5a (c) bright-field TEM image of grain boundary (d) EDS maps of element distribution for Fig.5c (e) HRTEM image corresponding to region e in Fig.1a (Inset shows the SAED pattern) (f) inverse fast Fourier transformation (IFFT) image using the satellite spots in the inset of Fig.5e (CeSb/()) (g) IFFT image using the satellite spots in the inset of Fig.5e (CoSb3/())
Fig.6 Thermoelectric figure of merit (ZT) of the SPSed bulk LaxCeyFe3CoSb12 thermoelectric material
Fig.7 Characterizations and analyses of the SPSed bulk La0.1Ce0.8Fe3CoSb12 thermoelectric material with sputtering Al-Ni coating (a) photo before and after sputtering Al-Ni coating (b) OM image of substrate and coating (c) SEM image of coating (d, e) EDS maps of elements Al (d) and Ni (e) of rectangle area in Fig.7c (f) SEM image of substrate and coating (g) line scan result along line EF in Fig.7f
Fig.8 Thermoelectric properties curves of the SPSed bulk La0.1Ce0.8Fe3CoSb12 thermoelectric material before and after sputtering Al-Ni coating (a) Seebeck coefficient (b) electrical resistivity (c) thermal conductivity (d) thermoelectric figure of merit
Fig.9 SEM image of the SPSed bulk La0.1Ce0.8Fe3CoSb12 thermoelectric material joint (a) and the line scan result along line AB in Fig.9a (b)
Fig.10 SEM image of the SPSed bulk La0.1Ce0.8Fe3CoSb12 thermoelectric material after welding and corresponding elements distribution
1
Suarez F, Parekh D P, Ladd C, et al. Flexible thermoelectric generator using bulk legs and liquid metal interconnects for wearable electronics[J]. Appl. Energy, 2017, 202: 736
doi: 10.1016/j.apenergy.2017.05.181
2
Siddique A R M, Rabari R, Mahmud S, et al. Thermal energy harvesting from the human body using flexible thermoelectric generator (FTEG) fabricated by a dispenser printing technique[J]. Energy, 2016, 115: 1081
doi: 10.1016/j.energy.2016.09.087
3
Kuroki T, Kabeya K, Makino K, et al. Thermoelectric generation using waste heat in steel works[J]. J. Electron. Mater., 2014, 43: 2405
doi: 10.1007/s11664-014-3094-5
4
Sun H Y, Li S M, Feng S K, et al. Microstructure and phase selection in directional solidification of Co-Sb alloy[J]. Acta Metall. Sin., 2013, 49: 682
doi: 10.3724/SP.J.1037.2012.00735
Yang B, Li S M, Li X, et al. Ultralow thermal conductivity and enhanced thermoelectric properties of SnTe based alloys prepared by melt spinning technique[J]. J. Alloys Compd., 2020, 837: 155568
doi: 10.1016/j.jallcom.2020.155568
6
Zheng Z H, Li F, Luo J T, et al. Thermoelectric properties and micro-structure characteristics of nano-sized CoSb3 thin films prefabricating by co-sputtering[J]. J. Alloys Compd., 2018, 732: 958
doi: 10.1016/j.jallcom.2017.10.207
7
Tang Y L, Chen S W, Snyder G J. Temperature dependent solubility of Yb in Yb-CoSb3 skutterudite and its effect on preparation, optimization and lifetime of thermoelectrics[J]. J. Materiomics, 2015, 1: 75
doi: 10.1016/j.jmat.2015.03.008
8
Li X H, Zhang Q, Kang Y L, et al. High pressure synthesized Ca-filled CoSb3 skutterudites with enhanced thermoelectric properties[J]. J. Alloys Compd., 2016, 677: 61
doi: 10.1016/j.jallcom.2016.03.239
9
Tang Y L, Gibbs Z M, Agapito L A, et al. Convergence of multi-valley bands as the electronic origin of high thermoelectric performance in CoSb3 skutterudites[J]. Nat. Mater., 2015, 14: 1223
doi: 10.1038/nmat4430
10
Zhou Z X, Li J L, Fan Y C, et al. Uniform dispersion of SiC in Yb-filled skutterudite nanocomposites with high thermoelectric and mechanical performance[J]. Scr. Mater., 2019, 162: 166
doi: 10.1016/j.scriptamat.2018.11.015
11
Zhou X Y, Wang G W, Guo L J, et al. Hierarchically structured TiO2 for Ba-filled skutterudite with enhanced thermoelectric performance[J]. J. Mater. Chem., 2014, 2A: 20629
12
Tang Y L, Qiu Y T, Xi L L, et al. Phase diagram of In-Co-Sb system and thermoelectric properties of In-containing skutterudites[J]. Energy Environ. Sci., 2014, 7: 812
doi: 10.1039/C3EE43240H
13
Meng X F, Liu Z H, Cui B, et al. Grain boundary engineering for achieving high thermoelectric performance in n-type skutterudites[J]. Adv. Energy Mater., 2017, 7: 1602582
doi: 10.1002/aenm.201602582
14
Akasaka M, Iida T, Sakuragi G, et al. Effects of post-annealing on thermoelectric properties of p-type CoSb3 grown by the vertical Bridgman method[J]. J. Alloys Compd., 2005, 386: 228
doi: 10.1016/j.jallcom.2004.04.144
15
Furuyama S, Iida T, Matsui S, et al. Thermoelectric properties of undoped p-type CoSb3 prepared by vertical Bridgman crystal growth and spark plasma sintering[J]. J. Alloys Compd., 2006, 415: 251
doi: 10.1016/j.jallcom.2005.07.057
16
Yang L, Wu J S, Zhang L T. Study of grain growth and spark plasma sintering of a Skutterudite compound[J]. Acta Metall. Sin., 2003, 39: 785
Rogl G, Setman D, Schafler E, et al. High-pressure torsion, a new processing route for thermoelectrics of high ZTs by means of severe plastic deformation[J]. Acta Mater., 2012, 60: 2146
doi: 10.1016/j.actamat.2011.12.023
18
Ballikaya S, Uher C. Enhanced thermoelectric performance of optimized Ba, Yb filled and Fe substituted skutterudite compounds[J]. J. Alloys Compd., 2014, 585: 168
doi: 10.1016/j.jallcom.2013.09.124
19
Geng H Y, Ochi T, Suzuki S, et al. Thermoelectric properties of multifilled skutterudites with La as the main filler[J]. J. Electron. Mater., 2013, 42: 1999
doi: 10.1007/s11664-013-2501-7
20
Tan G J, Liu W, Wang S Y, et al. Rapid preparation of CeFe4Sb12 skutterudite by melt spinning: Rich nanostructures and high thermoelectric performance[J]. J. Mater. Chem., 2013, 1A: 12657
21
Tan G J, Zheng Y, Tang X F. High thermoelectric performance of nonequilibrium synthesized CeFe4Sb12 composite with multi-scaled nanostructures[J]. Appl. Phys. Lett., 2013, 103: 183904
doi: 10.1063/1.4827555
22
Rogl G, Grytsiv A, Rogl P, et al. Nanostructuring of p- and n-type skutterudites reaching figures of merit of approximately 1.3 and 1.6, respectively[J]. Acta Mater., 2014, 76: 434
doi: 10.1016/j.actamat.2014.05.051
23
Bae S H, Lee K H, Choi S M. Effective role of filling fraction control in p-type CexFe3CoSb12 skutterudite thermoelectric materials[J]. Intermetallics, 2019, 105: 44
doi: 10.1016/j.intermet.2018.11.010
24
Park K H, Lee S, Seo W S, et al. Thermoelectric properties of La-filled CoSb3 skutterudites[J]. J. Korean Phys. Soc., 2014, 64: 1004
doi: 10.3938/jkps.64.1004
25
Liu K G, Dong X, Zhang J X. The effects of La on thermoelectric properties of LaxCo4Sb12 prepared by MA-SPS[J]. Mater. Chem. Phys., 2006, 96: 371
doi: 10.1016/j.matchemphys.2005.07.068
26
Ballikaya S, Wang G Y, Sun K, et al. Thermoelectric properties of triple-filled BaxYby In zCo4Sb12 Skutterudites[J]. J. Electron. Mater., 2011, 40: 570
doi: 10.1007/s11664-010-1454-3
27
Shi X, Zhang W, Chen L D, et al. Filling fraction limit for intrinsic voids in crystals: Doping in skutterudites[J]. Phys. Rev. Lett., 2005, 95: 185503
doi: 10.1103/PhysRevLett.95.185503
28
Wojciechowski K T, Zybala R, Mania R. High temperature CoSb3-Cu junctions[J]. Microelectron. Reliab., 2011, 51: 1198
doi: 10.1016/j.microrel.2011.03.033
29
Feng H B, Zhang L X, Zhang J L, et al. Metallization and diffusion bonding of CoSb3-based thermoelectric materials[J]. Materials, 2020, 13: 1130
doi: 10.3390/ma13051130