Toughening Pathways and Regulatory Mechanisms of Refractory High-Entropy Alloys
XU Liujie1(), ZONG Le2, LUO Chunyang2, JIAO Zhaolin2, WEI Shizhong3()
1.Engineering Research Center of Tribology and Materials Protection, Ministry of Education, Henan University of Science and Technology, Luoyang 471003, China 2.School of Materials Science and Engineering, Henan University of Science and Technology, Luoyang 471003, China 3.National Joint Engineering Research Center for Abrasion Control and Molding of Metal Materials, Henan University of Science and Technology, Luoyang 471003, China
Cite this article:
XU Liujie, ZONG Le, LUO Chunyang, JIAO Zhaolin, WEI Shizhong. Toughening Pathways and Regulatory Mechanisms of Refractory High-Entropy Alloys. Acta Metall Sin, 2022, 58(3): 257-271.
Alloying has long been used to improve the properties of metals. Typically, the design concept starts with two metal elements as the foundation and small quantities of other elements are added to change or optimize the alloy properties. Recently, a new alloy has emerged, which combines several main elements to form new alloys, known as high-entropy alloys. Among them, refractory high-entropy alloys (RHEAs) made by mixing five or more refractory metal elements that have similar atomic ratios have wide application prospects in the field of high-temperature materials because of their stable phase structures and excellent high-temperature properties. This paper reviews the mechanical properties and microstructure of typical RHEAs, mechanism of toughening and mechanical property regulation of RHEAs, and prospects for the future development of RHEAs, starting with the current research status of RHEAs. The first section delves into the classification of RHEAs based on their constituent phases, and the microstructure and phase composition of the RHEAs are investigated. The second section summarizes the mechanical properties, strengthening, and toughening mechanisms of RHEAs at room and high temperatures. The third section illustrates and discusses three different strengthening and toughening schemes that have been used to modulate the mechanical properties of RHEAs, namely, chemical composition, process, and phase structure modulations. Finally, the future development of RHEAs have been forecasted and the following recommendations are made for key RHEA research trends in the future: simulating and calculating the materials properties and formation phases using computers and other technologies, development of a research platform and database for RHEAs, accelerating the screening of new RHEAs using combinatorial experimental methods, and acquiring top-down and bottom-up experimental methods to explore RHEAs systems with excellent properties.
Fig.1 SEM (a) and TEM (b) images of AlNbTiV (Inset in Fig.2a shows the enlarged image, inset in Fig.2b shows the selected area election diffraction (SAED) pattern)[23]
Fig.2 TEM image of microstructure in the dual-phase Ta0.5HfZrTi (The upper right inset shows the location where the TEM image was taken)[36]
Fig.3 Surface morphology (a) and TEM image (b) of TiZrHfBe (Cu7.5Ni12.5) rods (Inset is the corresponding SAED pattern)[40]
Fig.4 Relationship between yield strength and elong-ation of refractory high-entropy alloys (RHEAs) at room temperature[3,4,11,21,23,24,27,28,32,33,36,38,41-77]
Fig.5 TEM analyses of the NbTaTiV RHEA sintered at 1700oC[84]
Fig.6 Microstructure evolutions of HfNbTaTiZr alloys annealed under different conditions[86]
Fig.7 Yield strength of RHEAs as a function of temperature (SPS—spark plasma sintering)[4,23,24,27,33,35,44,49-51,53,64,67,68,93-95]
Fig.8 Chemical component tuning for RHEAs
1
Tsai Y L , Wang S F , Bor H Y , et al . Effects of alloy elements on microstructure and creep properties of fine-grained nickel-based superalloys at moderate temperatures [J]. Mater. Sci. Eng., 2013, A571: 155
2
Yeh J W , Chen S K , Lin S J , et al . Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes [J]. Adv. Eng. Mater., 2004, 6: 299
3
Senkov O N , Wilks G B , Miracle D B , et al . Refractory high-entropy alloys [J]. Intermetallics, 2010, 18: 1758
4
Senkov O N , Wilks G B , Scott J M , et al . Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 refractory high entropy alloys [J]. Intermetallics, 2011, 19: 698
5
Liu C M , Wang H M , Zhang S Q , et al . Microstructure and oxidation behavior of new refractory high entropy alloys [J]. J. Alloys Compd., 2014, 583: 162
6
Gorr B , Azim M , Christ H J , et al . Phase equilibria, microstructure, and high temperature oxidation resistance of novel refractory high-entropy alloys [J]. J. Alloys Compd., 2015, 624: 270
7
Senkov O N , Senkova S V , Dimiduk D M , et al . Oxidation behavior of a refractory NbCrMo0.5Ta0.5TiZr alloy [J]. J. Mater. Sci., 2012, 47: 6522
8
Gorr B , Mueller F , Christ H J , et al . High temperature oxidation behavior of an equimolar refractory metal-based alloy 20Nb- 20Mo-20Cr-20Ti-20Al with and without Si addition [J]. J. Alloys Compd., 2016, 688: 468
9
Li J M , Yang X , Zhu R L , et al . Corrosion and serration behaviors of TiZr0.5NbCr0.5V x Mo y high entropy alloys in aqueous environments [J]. Metals, 2014, 4: 597
10
Jayaraj J , Thinaharan C , Ningshen S , et al . Corrosion behavior and surface film characterization of TaNbHfZrTi high entropy alloy in aggressive nitric acid medium [J]. Intermetallics, 2017, 89: 123
11
Wang S P , Xu J . TiZrNbTaMo high-entropy alloy designed for orthopedic implants: As-cast microstructure and mechanical properties [J]. Mater. Sci. Eng., 2017, C73: 80
12
Yan D L , Song K K , Sun H G , et al . Microstructures, mechanical properties, and corrosion behaviors of refractory high-entropy ReTaWNbMo alloys [J]. J. Mater. Eng. Perform., 2020, 29: 399
13
Hung S B , Wang C J , Chen Y Y , et al . Thermal and corrosion properties of V-Nb-Mo-Ta-W and V-Nb-Mo-Ta-W-Cr-B high entropy alloy coatings [J]. Surf. Coat. Technol., 2019, 375: 802
14
Egami T , Guo W , Rack P D , et al . Irradiation resistance of multicomponent alloys [J]. Metall. Mater. Trans., 2014, 45A: 180
15
El-Atwani O , Li N , Li M , et al . Outstanding radiation resistance of tungsten-based high-entropy alloys [J]. Sci. Adv., 2019, 5: eaav2002
16
Waseem O A , Ryu H J . Powder metallurgy processing of a W x TaTiVCr high-entropy alloy and its derivative alloys for fusion material applications [J]. Sci. Rep., 2017, 7: 1926
17
Li T X , Lu Y P , Cao Z Q , et al . Opportunity and challenge of refractory high-entropy alloys in the field of reactor structural materials [J]. Acta Metall. Sin., 2021, 57: 42
Chang S , Tseng K K , Yang T Y , et al . Irradiation-induced swelling and hardening in HfNbTaTiZr refractory high-entropy alloy [J]. Mater. Lett., 2020, 272: 127832
19
Lu Y P , Huang H F , Gao X Z , et al . A promising new class of irradiation tolerant materials: Ti2ZrHfV0.5Mo0.2 high-entropy alloy [J]. J. Mater. Sci. Technol., 2019, 35: 369
20
George E P , Raabe D , Ritchie R O . High-entropy alloys [J]. Nat. Rev. Mater., 2019, 4: 515
21
Yao H W , Qiao J W , Gao M C , et al . NbTaV-(Ti,W) refractory high-entropy alloys: Experiments and modeling [J]. Mater. Sci. Eng., 2016, A674: 203
22
Chen W , Tang Q H , Wang H , et al . Microstructure and mechanical properties of a novel refractory AlNbTiZr high-entropy alloy [J]. Mater. Sci. Technol., 2018, 34: 1309
23
Yurchenko N Y , Stepanov N D , Zherebtsov S V , et al . Structure and mechanical properties of B2 ordered refractory AlNbTiVZr x (x = 0-1.5) high-entropy alloys [J]. Mater. Sci. Eng., 2017, A704: 82
24
Senkov O N , Jensen J K , Pilchak A L , et al . Compositional variation effects on the microstructure and properties of a refractory high-entropy superalloy AlMo0.5NbTa0.5TiZr [J]. Mater. Des., 2018, 139: 498
25
Zhang W R , Liaw P K , Zhang Y . Science and technology in high-entropy alloys [J]. Sci. China Mater., 2018, 61: 2
26
Butler T M , Chaput K J , Dietrich J R , et al . High temperature oxidation behaviors of equimolar NbTiZrV and NbTiZrCr refractory complex concentrated alloys (RCCAs) [J]. J. Alloys Compd., 2017, 729: 1004
27
Senkov O N , Senkova S V , Miracle D B , et al . Mechanical properties of low-density, refractory multi-principal element alloys of the Cr-Nb-Ti-V-Zr system [J]. Mater. Sci. Eng., 2013, A565: 51
28
Senkov O N , Senkova S V , Woodward C , et al . Low-density, refractory multi-principal element alloys of the Cr-Nb-Ti-V-Zr system: Microstructure and phase analysis [J]. Acta Mater., 2013, 61: 1545
29
Long Y , Liang X B , Su K , et al . A fine-grained NbMoTaWVCr refractory high-entropy alloy with ultra-high strength: Microstructural evolution and mechanical properties [J]. J. Alloys Compd., 2019, 780: 607
30
Takeuchi A , Inoue A . Classification of bulk metallic glasses by atomic size difference, heat of mixing and period of constituent elements and its application to characterization of the main alloying element [J]. Mater. Trans., 2005, 46: 2817
31
Chang C H , Titus M S , Yeh J W . Oxidation behavior between 700 and 1300oC of refractory TiZrNbHfTa high-entropy alloys containing aluminum [J]. Adv. Eng. Mater., 2018, 20: 1700948
32
Senkov O N , Senkova S V , Woodward C . Effect of aluminum on the microstructure and properties of two refractory high-entropy alloys [J]. Acta Mater., 2014, 68: 214
33
Senkov O N , Woodward C , Miracle D B . Microstructure and properties of aluminum-containing refractory high-entropy alloys [J]. JOM, 2014, 66: 2030
34
Wang W , Zhang Z T , Niu J Z , et al . Effect of Al addition on structural evolution and mechanical properties of the Al x HfNbTiZr high-entropy alloys [J]. Mater. Today Commun., 2018, 16: 242
35
Senkov O N , Isheim D , Seidman D N , et al . Development of a refractory high entropy superalloy [J]. Entropy, 2016, 18: 102
36
Huang H L , Wu Y , He J Y , et al . Phase-transformation ductilization of brittle high-entropy alloys via metastability engineering [J]. Adv. Mater., 2017, 29: 1701678
37
Stepanov N D , Yurchenko N Y , Zherebtsov S V , et al . Aging behavior of the HfNbTaTiZr high entropy alloy [J]. Mater. Lett., 2018, 211: 87
38
Jiang H , Jiang L , Lu Y P , et al . Microstructure and mechanical properties of the W-Ni-Co system refractory high-entropy alloys [J]. Mater. Sci. Forum, 2015, 816: 324
39
Zhao S F , Yang G N , Ding H Y , et al . A quinary Ti-Zr-Hf-Be-Cu high entropy bulk metallic glass with a critical size of 12 mm [J]. Intermetallics, 2015, 61: 47
40
Zhao S F , Shao Y , Liu X , et al . Pseudo-quinary Ti20Zr20Hf20Be20-(Cu20 - x Ni x ) high entropy bulk metallic glasses with large glass forming ability [J]. Mater. Des., 2015, 87: 625
41
Han Z D , Luan H W , Liu X , et al . Microstructures and mechanical properties of Ti x NbMoTaW refractory high-entropy alloys [J]. Mater. Sci. Eng., 2018, A712: 380
42
Senkov O N , Scott J M , Senkova S V , et al . Microstructure and room temperature properties of a high-entropy TaNbHfZrTi alloy [J]. J. Alloys Compd., 2011, 509: 6043
43
Zhang Y , Yang X , Liaw P K . Alloy design and properties optimization of high-entropy alloys [J]. JOM, 2012, 64: 830
44
Senkov O N , Woodward C F . Microstructure and properties of a refractory NbCrMo0.5Ta0.5TiZr alloy [J]. Mater. Sci. Eng., 2011, A529: 311
45
Yang X , Zhang Y , Liaw P K . Microstructure and compressive properties of NbTiVTaAlx high entropy alloys [J]. Procedia Eng., 2012, 36: 292
46
Chen S Y , Yang X , Dahmen K A , et al . Microstructures and crackling noise of Al x NbTiMoV high entropy alloys [J]. Entropy, 2014, 16: 870
47
Stepanov N D , Shaysultanov D G , Salishchev G A , et al . Structure and mechanical properties of a light-weight AlNbTiV high entropy alloy [J]. Mater. Lett., 2015, 142: 153
48
Fazakas É , Zadorozhnyy V , Varga L K , et al . Experimental and theoretical study of Ti20Zr20Hf20Nb20X20 (X = V or Cr) refractory high-entropy alloys [J]. Int. J. Refract. Met. Hard Mater., 2014, 47: 131
49
Juan C C , Tsai M H , Tsai C W , et al . Enhanced mechanical properties of HfMoTaTiZr and HfMoNbTaTiZr refractory high-entropy alloys [J]. Intermetallics, 2015, 62: 76
50
Guo N N , Wang L , Luo L S , et al . Microstructure and mechanical properties of refractory MoNbHfZrTi high-entropy alloy [J]. Mater. Des., 2015, 81: 87
51
Han Z D , Chen N , Zhao S F , et al . Effect of Ti additions on mechanical properties of NbMoTaW and VNbMoTaW refractory high entropy alloys [J]. Intermetallics, 2017, 84: 153
52
Lin C M , Juan C C , Chang C H , et al . Effect of Al addition on mechanical properties and microstructure of refractory Al x HfNbTaTiZr alloys [J]. J. Alloys Compd., 2015, 624: 100
53
Stepanov N D , Yurchenko N Y , Skibin D V , et al . Structure and mechanical properties of the AlCr x NbTiV (x = 0, 0.5, 1, 1.5) high entropy alloys [J]. J. Alloys Compd., 2015, 652: 266
54
Wu Y D , Cai Y H , Chen X H , et al . Phase composition and solid solution strengthening effect in TiZrNbMoV high-entropy alloys [J]. Mater. Des., 2015, 83: 651
55
Guo N N , Wang L , Luo L S , et al . Microstructure and mechanical properties of refractory high entropy (Mo0.5NbHf0.5ZrTi)BCC/M5Si3 in-situ compound [J]. J. Alloys Compd., 2016, 660: 197
56
Guo N N , Wang L , Luo L S , et al . Microstructure and mechanical properties of in-situ MC-carbide particulates-reinforced refractory high-entropy Mo0.5NbHf0.5ZrTi matrix alloy composite [J]. Intermetallics, 2016, 69: 74
57
Yao H W , Qiao J W , Gao M C , et al . MoNbTaV medium-entropy alloy [J]. Entropy, 2016, 18: 189
58
Juan C C , Tseng K K , Hsu W L , et al . Solution strengthening of ductile refractory HfMo x NbTaTiZr high-entropy alloys [J]. Mater. Lett., 2016, 175: 284
59
Maiti S , Steurer W . Structural-disorder and its effect on mechanical properties in single-phase TaNbHfZr high-entropy alloy [J]. Acta Mater., 2016, 106: 87
60
Qiao D X , Jiang H , Chang X X , et al . Microstructure and mechanical properties of VTaTiMoAl x refractory high entropy alloys [J]. Mater. Sci. Forum, 2017, 898: 638
61
Stepanov N D , Yurchenko N Y , Panina E S , et al . Precipitation-strengthened refractory Al0.5CrNbTi2V0.5 high entropy alloy [J]. Mater. Lett., 2017, 188: 162
62
Zhang M N , Zhou X L , Li J H . Microstructure and mechanical properties of a refractory CoCrMoNbTi high-entropy alloy [J]. J. Mater. Eng. Perform., 2017, 26: 3657
63
Waseem O A , Lee J , Lee H M , et al . The effect of Ti on the sintering and mechanical properties of refractory high-entropy alloy Ti x WTaVCr fabricated via spark plasma sintering for fusion plasma-facing materials [J]. Mater. Chem. Phys., 2018, 210: 87
64
Liu Y , Zhang Y , Zhang H , et al . Microstructure and mechanical properties of refractory HfMo0.5NbTiV0.5Si x high-entropy composites [J]. J. Alloys Compd., 2017, 694: 869
65
Yao H W , Qiao J W , Hawk J A , et al . Mechanical properties of refractory high-entropy alloys: Eexperiments and modeling [J]. J. Alloys Compd., 2017, 696: 1139
66
Poulia A , Georgatis E , Mathiou C , et al . Phase segregation discussion in a Hf25Zr30Ti20Nb15V10 high entropy alloy: The effect of the high melting point element [J]. Mater. Chem. Phys., 2018, 210: 251
67
Zhang Y , Liu Y , Li Y X , et al . Microstructure and mechanical properties of a refractory HfNbTiVSi0.5 high-entropy alloy composite [J]. Mater. Lett., 2016, 174: 82
68
Zhang Y , Liu Y , Li Y X , et al . Microstructure and mechanical properties of a new refractory HfNbSi0.5TiVZr high entropy alloy [J]. Mater. Sci. Forum, 2016, 849: 76
69
Huang T D , Wu S Y , Jiang H , et al . Effect of Ti content on microstructure and properties of Ti x ZrVNb refractory high-entropy alloys [J]. Int. J. Miner., Metall. Mater., 2020, 27: 1318
70
Pang J Y , Zhang H W , Zhang L , et al . Ductile Ti1.5ZrNbAl0.3 refractory high entropy alloy with high specific strength [J]. Mater. Lett., 2021, 290: 129428
71
Chen Y W , Li Y K , Cheng X W , et al . The microstructure and mechanical properties of refractory high-entropy alloys with high plasticity [J]. Materials (Basel), 2018, 11: 208
72
Chen Y W , Xu Z Q , Wang M , et al . A single-phase V0.5Nb0.5ZrTi refractory high-entropy alloy with outstanding tensile properties [J]. Mater. Sci. Eng., 2020, A792: 139774
73
Wu Y D , Cai Y H , Wang T , et al . A refractory Hf25Nb25Ti25Zr25 high-entropy alloy with excellent structural stability and tensile properties [J]. Mater. Lett., 2014, 130: 277
74
Lilensten L , Couzinié J P , Bourgon J , et al . Design and tensile properties of a bcc Ti-rich high-entropy alloy with transformation-induced plasticity [J]. Mater. Res. Lett., 2017, 5: 110
75
Wei S L , Kim S J , Kang J Y , et al . Natural-mixing guided design of refractory high-entropy alloys with as-cast tensile ductility [J]. Nat. Mater., 2020, 19: 1175
76
Senkov O N , Semiatin S L . Microstructure and properties of a refractory high-entropy alloy after cold working [J]. J. Alloys Compd., 2015, 649: 1110
77
Sheikh S , Shafeie S , Hu Q , et al . Alloy design for intrinsically ductile refractory high-entropy alloys [J]. J. Appl. Phys., 2016, 120: 164902
78
Pan J Y , Dai T , Lu T , et al . Microstructure and mechanical properties of Nb25Mo25Ta25W25 and Ti8Nb23Mo23Ta23W23 high entropy alloys prepared by mechanical alloying and spark plasma sintering [J]. Mater. Sci. Eng., 2018, A738: 362
79
Juan C C , Tsai M H , Tsai C W , et al . Simultaneously increasing the strength and ductility of a refractory high-entropy alloy via grain refining [J]. Mater. Lett., 2016, 184: 200
80
Lu Z P , Lei Z F , Huang H L , et al . Deformation behavior and toughening of high-entropy alloys [J]. Acta Metall. Sin., 2018, 54: 1553
Lei Z F , Liu X J , Wu Y , et al . Enhanced strength and ductility in a high-entropy alloy via ordered oxygen complexes [J]. Nature, 2018, 563: 546
82
Chen Y W , Li Y K , Cheng X W , et al . Interstitial strengthening of refractory ZrTiHfNb0.5Ta0.5O x (x = 0.05, 0.1, 0.2) high-entropy alloys [J]. Mater. Lett., 2018, 228: 145
83
Lu Z P , Jiang S H , He J Y , et al . Second phase strengthening in advanced metal materials [J]. Acta Metall. Sin., 2016, 52: 1183
Fu A , Guo W M , Liu B , et al . A particle reinforced NbTaTiV refractory high entropy alloy based composite with attractive mechanical properties [J]. J. Alloys Compd., 2020, 815: 152466
85
Senkov O N , Couzinie J P , Rao S I , et al . Temperature dependent deformation behavior and strengthening mechanisms in a low density refractory high entropy alloy Al10Nb15Ta5Ti30Zr40 [J]. Materialia, 2020, 9: 100627
86
Yang C , Aoyagi K , Bian H K , et al . Microstructure evolution and mechanical property of a precipitation-strengthened refractory high-entropy alloy HfNbTaTiZr [J]. Mater. Lett., 2019, 254: 46
87
Wei S Z , Xu L J . Review on research progress of steel and iron wear-resistant materials [J]. Acta Metall. Sin., 2020, 56: 523
魏世忠, 徐流杰 . 钢铁耐磨材料研究进展 [J]. 金属学报, 2020, 56: 523
88
Bleck W , Guo X F , Ma Y . The TRIP effect and its application in cold formable sheet steels [J]. Steel Res. Int., 2017, 88: 1700218
89
Yu Q , Chen Y J , Fang Y . Heterogeneity in chemical distribution and its impact in high-entropy alloys [J]. Acta Metall. Sin., 2021, 57: 393
Herrera C , Ponge D , Raabe D . Design of a novel Mn-based 1 GPa duplex stainless TRIP steel with 60% ductility by a reduction of austenite stability [J]. Acta Mater., 2011, 59: 4653
91
Sun F , Zhang J Y , Marteleur M , et al . Investigation of early stage deformation mechanisms in a metastable β titanium alloy showing combined twinning-induced plasticity and transformation-induced plasticity effects [J]. Acta Mater., 2013, 61: 6406
92
Wu Y , Xiao Y H , Chen G L , et al . Bulk metallic glass composites with transformation-mediated work-hardening and ductility [J]. Adv. Mater., 2010, 22: 2770
93
Senkov O N , Scott J M , Senkova S V , et al . Microstructure and elevated temperature properties of a refractory TaNbHfZrTi alloy [J]. J. Mater. Sci., 2012, 47: 4062
94
Chen H , Kauffmann A , Gorr B , et al . Microstructure and mechanical properties at elevated temperatures of a new Al-containing refractory high-entropy alloy Nb-Mo-Cr-Ti-Al [J]. J. Alloys Compd., 2016, 661: 206
95
Chen H , Kauffmann A , Laube S , et al . Contribution of lattice distortion to solid solution strengthening in a series of refractory high entropy alloys [J]. Metall. Mater. Trans., 2018, 49A: 772
96
Chokshi A H . High temperature deformation in fine grained high entropy alloys [J]. Mater. Chem. Phys., 2018, 210: 152
97
Hadraba H , Chlup Z , Dlouhy A , et al . Oxide dispersion strengthened CoCrFeNiMn high-entropy alloy [J]. Mater. Sci. Eng., 2017, A689: 252
98
He J Y , Liu W H , Wang H , et al . Effects of Al addition on structural evolution and tensile properties of the FeCoNiCrMn high-entropy alloy system [J]. Acta Mater., 2014, 62: 105
99
He J Y , Wang H , Wu Y , et al . High-temperature plastic flow of a precipitation-hardened FeCoNiCr high entropy alloy [J]. Mater. Sci. Eng., 2017, A686: 34
100
Yang Y , He Q F . Lattice distortion in high-entropy alloys [J]. Acta Metall. Sin., 2021, 57: 385
杨 勇, 赫全锋 . 高熵合金中的晶格畸变 [J]. 金属学报, 2021, 57: 385
101
Zong L , Xu L J , Luo C Y , et al . Refractory high-entropy alloys: A review of preparation methods and properties [J]. Chin. J. Eng., 2021, 43: 1459
Lv S S , Zu Y F , Chen G Q , et al . A multiple nonmetallic atoms co-doped CrMoNbWTi refractory high-entropy alloy with ultra-high strength and hardness [J]. Mater. Sci. Eng., 2020, A795: 140035
103
He J Y , Wang H , Huang H L , et al . A precipitation-hardened high-entropy alloy with outstanding tensile properties [J]. Acta Mater., 2016, 102: 187
104
Niu S Z , Kou H C , Guo T , et al . Strengthening of nanoprecipitations in an annealed Al0.5CoCrFeNi high entropy alloy [J]. Mater. Sci. Eng., 2016, A671: 82
105
He F , Wang Z J , Niu S Z , et al . Strengthening the CoCrFeNi-Nb0.25 high entropy alloy by FCC precipitate [J]. J. Alloys Compd., 2016, 667: 53
106
Ding J , Wang Z J . Local chemical order in high-entropy alloys [J]. Acta Metall. Sin., 2021, 57: 413
丁 俊, 王章洁 . 高熵合金中的局域化学有序 [J]. 金属学报, 2021, 57: 413
107
Liu W H , Wu Y , He J Y , et al . Grain growth and the Hall-Petch relationship in a high-entropy FeCrNiCoMn alloy [J]. Scr. Mater., 2013, 68: 526
108
Wu D , Zhang J Y , Huang J C , et al . Grain-boundary strengthening in nanocrystalline chromium and the Hall-Petch coefficient of body-centered cubic metals [J]. Scr. Mater., 2013, 68: 118
109
Otto F , Dlouhý A , Somsen C , et al . The influences of temperature and microstructure on the tensile properties of a CoCrFeMnNi high-entropy alloy [J]. Acta Mater., 2013, 61: 5743
110
Wang Z W , Baker I , Cai Z H , et al . The effect of interstitial carbon on the mechanical properties and dislocation substructure evolution in Fe40.4Ni11.3Mn34.8Al7.5Cr6 high entropy alloys [J]. Acta Mater., 2016, 120: 228
111
Stepanov N D , Shaysultanov D G , Chernichenko R S , et al . Effect of thermomechanical processing on microstructure and mechanical properties of the carbon-containing CoCrFeNiMn high entropy alloy [J]. J. Alloys Compd., 2017, 693: 394
112
Lu Y P , Dong Y , Guo S , et al . A promising new class of high-temperature alloys: Eutectic high-entropy alloys [J]. Sci. Rep., 2014, 4: 6200
113
Gao X Z , Lu Y P , Zhang B , et al . Microstructural origins of high strength and high ductility in an AlCoCrFeNi2.1 eutectic high-entropy alloy [J]. Acta Mater., 2017, 141: 59
114
Jiang L , Lu Y P , Wu W , et al . Microstructure and mechanical properties of a CoFeNi2V0.5Nb0.75 eutectic high entropy alloy in as-cast and heat-treated conditions [J]. J. Mater. Sci. Technol., 2016, 32: 245
115
Rogal Ł , Kalita D , Litynska-Dobrzynska L . CoCrFeMnNi high entropy alloy matrix nanocomposite with addition of Al2O3 [J]. Intermetallics, 2017, 86: 104
116
Chen S T , Tang W Y , Kuo Y F , et al . Microstructure and properties of age-hardenable Al x CrFe1.5MnNi0.5 alloys [J]. Mater. Sci. Eng., 2010, A527: 5818
117
Gludovatz B , Hohenwarter A , Catoor D , et al . A fracture-resistant high-entropy alloy for cryogenic applications [J]. Science, 2014, 345: 1153
118
Deng Y , Tasan C C , Pradeep K G , et al . Design of a twinning-induced plasticity high entropy alloy [J]. Acta Mater., 2015, 94: 124
119
Gludovatz B , Hohenwarter A , Thurston K V S , et al . Exceptional damage-tolerance of a medium-entropy alloy CrCoNi at cryogenic temperatures [J]. Nat. Commun., 2016, 7: 10602
120
Li Z M , Pradeep K G , Deng Y , et al . Metastable high-entropy dual-phase alloys overcome the strength-ductility trade-off [J]. Nature, 2016, 534: 227
121
Li Z M , Körmann F , Grabowski B , et al . Ab initio assisted design of quinary dual-phase high-entropy alloys with transformation-induced plasticity [J]. Acta Mater., 2017, 136: 262
122
Wang H W , He Z F , Jia N . Microstructure and mechanical properties of a FeMnCoCr high-entropy alloy with heterogeneous structure [J]. Acta Metall. Sin., 2021, 57: 632
Kang B , Lee J , Ryu H J , et al . Ultra-high strength WNbMoTaV high-entropy alloys with fine grain structure fabricated by powder metallurgical process [J]. Mater. Sci. Eng., 2018, A712: 616
124
Schuh B , Völker B , Todt J , et al . Thermodynamic instability of a nanocrystalline, single-phase TiZrNbHfTa alloy and its impact on the mechanical properties [J]. Acta Mater., 2018, 142: 201
125
Guo Z M , Zhang A J , Han J S , et al . Effect of Si additions on microstructure and mechanical properties of refractory NbTaWMo high-entropy alloys [J]. J. Mater. Sci., 2019, 54: 5844