Please wait a minute...
Acta Metall Sin  2023, Vol. 59 Issue (6): 829-840    DOI: 10.11900/0412.1961.2021.00250
Research paper Current Issue | Archive | Adv Search |
Rust Formation Behavior and Mechanism of Q235 Carbon Steel in 5%NaCl Salt Spray Under Elastic Tensile Stress
LI Qian, LIU Kai, ZHAO Tianliang()
State Key Laboratory of Advanced Special Steel, School of Materials Science and Engineering, Shanghai University, Shanghai 200444, China
Cite this article: 

LI Qian, LIU Kai, ZHAO Tianliang. Rust Formation Behavior and Mechanism of Q235 Carbon Steel in 5%NaCl Salt Spray Under Elastic Tensile Stress. Acta Metall Sin, 2023, 59(6): 829-840.

Download:  HTML  PDF(3122KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

As a structural steel material, carbon steel bears a certain extent of elastic tensile stress in actual service. Elastic tensile stress on steel is supposed to impact the electrochemical process and corrosion behavior, which may further influence the rusting behavior and the phase composition and structure of the formed rust layer. However, stresses on the steel substrate slightly influence the rust layer of carbon steel because no intrinsic change exists in the corrosion mechanism. Here, a remarkable effect of elastic tensile stress on Q235 carbon steel was found on the phase composition and structure of the rust layer formed in 5%NaCl salt spray. The effect on the rust layer was studied using SEM, XRD, and electrochemical impedance spectroscopy. The neutral salt spray test with four-point bending was used to preform the rust layer of Q235 steel under various stress levels. The results show that the elastic tensile stress accelerates the anodic dissolution, thereby promoting the generation of γ-FeOOH, which occurs faster in the electrolyte than the transformation of γ-FeOOH to α-FeOOH and Fe3O4/γ-Fe2O3 in the solid-liquid interface. Consequently, the mass fraction of γ-FeOOH in the rust layer increases as the stress level increases, whereas the mass fraction of α-FeOOH and Fe3O4/γ-Fe2O3 decreases accordingly. As the stress increases from 0 to 0.95σs (σs is yield strength), the mass fraction of Fe3O4/γ-Fe2O3 decreases from 53% to ~46%, the mass fraction of α-FeOOH decreases from ~30% to ~23%, and the mass fraction of γ-FeOOH increases from less than 17% to ~31%. Meanwhile, the phase composition change decreases the density and increases the thickness of the rust layer. Additionally, the acceleration of the anodic dissolution induced by the elastic tensile stress promotes the growth of the rust layer, which further increases the thickness of the rust layer. The increase in thickness and decrease in compactness of the rust layer jointly enhance the protective capability of the rust layer. The former increases the resistance to the electromigration of ions through the rust layer, and the latter mitigates the occlusion effect under the rust layer.

Key words:  elastic tensile stress      carbon steel      phase composition      structure      protection mechanism     
Received:  18 June 2021     
ZTFLH:  TG172.3  
Fund: National Key Research and Development Program of China(2017YFB0702100);Sailing Program for Young Science and Technology Talents of Shanghai(20YF1412900)
Corresponding Authors:  ZHAO Tianliang, associate professor, Tel:15090998966, E-mail: tlzhao@shu.edu.com

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2021.00250     OR     https://www.ams.org.cn/EN/Y2023/V59/I6/829

Fig.1  Schematic of four-point bending device (H—distance between the outer fulcrums of the fixture, A—distance between adjacent inner and outer fulcrums, y—sample deflection, t—sample thickness)
Fig.2  Time dependences of the weight loss of Q235 carbon steel under various elastic tensile stress levels in 5%NaCl salt spray (σs—yield strength)
Stress levelabR2
0σs0.02000.91540.9987
0.5σs0.02280.90310.9981
0.8σs0.02530.88350.9962
0.95σs0.03080.83680.9898
Table 1  Corrosion kinetics fitting results of Q235 carbon steel with various elastic tensile stress levels in 5%NaCl salt spray
Fig.3  Surface morphologies of Q235 carbon steel under various elastic tensile stress levels after exposed in 5%NaCl salt spray for 1 d (a1-a4), 3 d (b1-b4), 6 d (c1-c4), 9 d (d1-d4), and 15 d (e1-e4) (a1-e1) 0σs (a2-e2) 0.5σs (a3-e3) 0.8σs (a4-e4) 0.95σs
Fig.4  Section morphologies and corresponding element distributions of the rust layers of Q235 carbon steel under various elastic tensile stress levels after exposed in 5%NaCl salt spray for 15 d
Fig.5  Variations of the rust thickness with the elastic tensile stress level for Q235 carbon steel after exposed in 5%NaCl salt spray for 15 d
Fig.6  XRD spectra (a) and phase compositions (b) in the rust layer of Q235 carbon steel under various elastic tensile stress levels after exposed in 5%NaCl salt spray for 15 d
Fig.7  Variations of mass per unit area and density of the rust layer with the elastic tensile stress level for Q235 carbon steel after exposed in 5%NaCl salt spray for 15 d
Fig.8  Variations of the open circuit potential measured under the loading methods A and B with elastic tensile stress level for Q235 carbon steel in 5%NaCl salt spray for 15 d (Method A—during the salt spray test period of 15 d and the electrochemical test process, the sample kept the stress loading state; Method B—no stress was loaded on the sample within 15 d of the salt spray test period, and the stress was loaded on the sample during electrochemical test after the salt spray test)
Fig.9  Nyquist (a, d), Bode-impedance modulus (b, e), and Bode-phase angle (c, f) plots of Q235 carbon steel with loading modes A (a-c) and B (d-f) under various elastic tensile stress levels after exposed in 5%NaCl salt spray for 15 d (Zim—imaginary part of impedance, Zre—real component, |Z|—impedance modulus)
ModeStressRsQrust (Y0)nrustRrustQct (Y0)nctRctWχ2
levelΩ·cm210-2 Ω-1·cm-2·s nΩ·cm210-2 Ω-1·cm-2·s nΩ·cm210-2 Ω-1·cm-2·s0.510-4
A0σs11.601.050.5210.510.170.6853.216.887.21
0.5σs9.590.520.4911.250.620.6046.286.521.91
0.8σs10.830.240.4312.591.380.6232.985.984.61
0.95σs9.940.140.3714.462.360.5729.045.462.01
B0σs11.601.050.5210.510.170.6853.216.887.21
0.5σs8.760.360.519.941.460.5435.436.641.78
0.8σs10.190.320.489.072.680.4821.626.243.16
0.95σs12.160.510.478.832.780.4416.486.132.08
Table 2  Fitting results for the EIS curves of Q235 carbon steel under loading modes A and B with various elastic tensile stress levels after exposed in 5%NaCl salt spray for 15 d
Fig.10  Equivalent electric circuit of the rust layer interface on Q235 carbon steel after exposed in 5%NaCl salt spray for 15 d
Fig.11  Variations of Rct, Rrust (a) and nrust, W (b) in the equivalent electric circuit with elastic tensile stress levels under loading modes A and B
Fig.12  Variations of r2 / r1 and (r2 + r3) / r1 in the rust layer and the rust layer density with elastic tensile stress level on the steel (r1—mass fraction of γ-FeOOH, r2—mass fraction of α-FeOOH, r3—mass fraction of Fe3O4/γ-Fe2O3)
1 Pan C, Cui Y, Liu L, et al. Effect of temperature on corrosion behavior of low-alloy steel exposed to a simulated marine atmospheric environment [J]. J. Mater. Eng. Perform., 2020, 29: 1400
doi: 10.1007/s11665-020-04649-5
2 Gao X L, Han Y, Fu G Q, et al. Evolution of the rust layers formed on carbon and weathering steels in environment containing chloride ions [J]. Acta Metall. Sin. (Engl. Lett.), 2016, 29: 1025
doi: 10.1007/s40195-016-0472-4
3 Guo M X, Tang J R, Gu T Z, et al. Corrosion behavior of 316L stainless steels exposed to salt lake atmosphere of Western China for 8 years [J]. Acta Metall. Sin. (Engl. Lett.), 2021, 34: 555
doi: 10.1007/s40195-020-01127-8
4 Alcántara J, de la Fuente D, Chico B, et al. Marine atmospheric corrosion of carbon steel: A review [J]. Materials, 2017, 10: 406
doi: 10.3390/ma10040406
5 Zhang X, Yang S W, Zhang W H, et al. Influence of outer rust layers on corrosion of carbon steel and weathering steel during wet-dry cycles [J]. Corros. Sci., 2014, 82: 165
doi: 10.1016/j.corsci.2014.01.016
6 Lair V, Antony H, Legrand L, et al. Electrochemical reduction of ferric corrosion products and evaluation of galvanic coupling with iron [J]. Corros. Sci., 2006, 48: 2050
doi: 10.1016/j.corsci.2005.06.013
7 Pan C, Han W, Wang Z Y, et al. Evolution of initial atmospheric corrosion of carbon steel in an industrial atmosphere [J]. J. Mater. Eng. Perform., 2016, 25: 5382
doi: 10.1007/s11665-016-2312-0
8 Wang C, Cao G W, Pan C, et al. Atmospheric corrosion of carbon steel and weathering steel in three environments [J]. J. Chin. Soc. Corros. Prot., 2016, 36: 39
汪 川, 曹公旺, 潘 辰 等. 碳钢、耐候钢在3种典型大气环境中的腐蚀规律研究 [J]. 中国腐蚀与防护学报, 2016, 36: 39
9 Pan C, Guo M X, Han W, et al. Study of corrosion evolution of carbon steel exposed to an industrial atmosphere [J]. Corros. Eng., Sci. Technol., 2019, 54: 241
10 Tiamiyu A, Eduok U, Odeshi A G, et al. Effect of prior plastic deformation and deformation rate on the corrosion resistance of AISI 321 austenitic stainless steel [J]. Mater. Sci. Eng., 2019, A745: 1
11 Zhao J J, Liu X B, Hu S, et al. Effect of Cl- concentration on the SCC behavior of 13Cr stainless steel in high-pressure CO2 environment [J]. Acta Metall. Sin. (Engl. Lett.), 2019, 32: 1459
doi: 10.1007/s40195-019-00923-1
12 Hao W K, Liu Z Y, Wu W, et al. Electrochemical characterization and stress corrosion cracking of E690 high strength steel in wet-dry cyclic marine environments [J]. Mater. Sci. Eng., 2018, A710: 318
13 Evans U R. The Corrosion and Oxidation of Metals: Scientific Principles and Practical Applications [M]. London: Edward Arnold Publishers Ltd., 1960: 1
14 Kim K M, Park J H, Kim H S, et al. Effect of plastic deformation on the corrosion resistance of ferritic stainless steel as a bipolar plate for polymer electrolyte membrane fuel cells [J]. Int. J. Hydrogen Energy, 2012, 37: 8459
doi: 10.1016/j.ijhydene.2012.02.127
15 Kim S J, Yun D W, Jung H G, et al. Numerical study on hydrogen permeation of ferritic steel evaluated under constant load [J]. Mater. Sci. Technol., 2017, 33: 149
doi: 10.1080/02670836.2016.1162001
16 Gao K, Li D, Pang X, et al. Corrosion behaviour of low-carbon bainitic steel under a constant elastic load [J]. Corros. Sci., 2010, 52: 3428
doi: 10.1016/j.corsci.2010.06.021
17 Zhao T L, Liu K, Li Q, et al. Elastic stress impacting on the rust layer of S450EW weathering steel through magnetomechanical effect [J]. Corros. Sci., 2021, 181: 109242
doi: 10.1016/j.corsci.2021.109242
18 Guo M X, Pan C, Wang Z Y, et al. A study on the initial corrosion behavior of carbon steel exposed to a simulated coastal-industrial atmosphere [J]. Acta Metall. Sin., 2018, 54: 65
doi: 10.11900/0412.1961.2017.00142
郭明晓, 潘 晨, 王振尧 等. 碳钢在模拟海洋工业大气环境中初期腐蚀行为研究 [J]. 金属学报, 2018, 54: 65
doi: 10.11900/0412.1961.2017.00142
19 Song X X, Huang S P, Wang C, et al. The initial corrosion behavior of carbon steel exposed to the coastal-industrial atmosphere in Hongyanhe [J]. Acta Metall. Sin., 2020, 56: 1355
宋学鑫, 黄松鹏, 汪 川 等. 碳钢在红沿河海洋工业大气环境中的初期腐蚀行为 [J]. 金属学报, 2020, 56: 1355
20 Fan Y M, Liu W, Sun Z T, et al. Effect of chloride ion on corrosion resistance of Ni-advanced weathering steel in simulated tropical marine atmosphere [J]. Constr. Build. Mater., 2021, 266: 120937
doi: 10.1016/j.conbuildmat.2020.120937
21 Hubbard C R, Snyder R L. RIR-measurement and use in quantitative XRD [J]. Powder Diffr., 1988, 3: 74
doi: 10.1017/S0885715600013257
22 Wu W, Dai Z Y, Liu Z Y, et al. Synergy of Cu and Sb to enhance the resistance of 3%Ni weathering steel to marine atmospheric corrosion [J]. Corros. Sci., 2021, 183: 109353
doi: 10.1016/j.corsci.2021.109353
23 Jüttner K. Electrochemical impedance spectroscopy (EIS) of corrosion processes on inhomogeneous surfaces [J]. Electrochim. Acta, 1990, 35: 1501
doi: 10.1016/0013-4686(90)80004-8
24 Li D G, Wang J D, Chen D R, et al. Influences of pH value, temperature, chloride ions and sulfide ions on the corrosion behaviors of 316L stainless steel in the simulated cathodic environment of proton exchange membrane fuel cell [J]. J. Power Sources, 2014, 272: 448
doi: 10.1016/j.jpowsour.2014.06.121
25 Freire L, Carmezim M J, Ferreira M G S, et al. The electrochemical behaviour of stainless steel AISI 304 in alkaline solutions with different pH in the presence of chlorides [J]. Electrochim. Acta, 2011, 56: 5280
doi: 10.1016/j.electacta.2011.02.094
26 Thee C, Hao L, Dong J H, et al. Numerical approach for atmospheric corrosion monitoring based on EIS of a weathering steel [J]. Acta Metall. Sin. (Engl. Lett.), 2015, 28: 261
doi: 10.1007/s40195-014-0193-5
27 Wu W, Cheng X Q, Zhao J B, et al. Benefit of the corrosion product film formed on a new weathering steel containing 3% nickel under marine atmosphere in Maldives [J]. Corros. Sci., 2020, 165: 108416
doi: 10.1016/j.corsci.2019.108416
28 Gao X L, Fu G Q, Zhu M Y. Effect of nickel on ion-selective property of rust formed on low-alloying weathering steel [J]. Acta Metall. Sin. (Engl. Lett.), 2012, 25: 295
29 Chen Y Y, Tzeng H J, Wei L I, et al. Corrosion resistance and mechanical properties of low-alloy steels under atmospheric conditions [J]. Corros. Sci., 2005, 47: 1001
doi: 10.1016/j.corsci.2004.04.009
30 Li S X, Hihara L H. In situ Raman spectroscopic identification of rust formation in Evans' droplet experiments [J]. Electrochem. Commun., 2012, 18: 48
doi: 10.1016/j.elecom.2012.02.014
31 Yamashita M, Konishi H, Kozakura T, et al. In situ observation of initial rust formation process on carbon steel under Na2SO4 and NaCl solution films with wet/dry cycles using synchrotron radiation X-rays [J]. Corros. Sci., 2005, 47: 2492
doi: 10.1016/j.corsci.2004.10.021
32 Jia J H, Cheng X Q, Yang X J, et al. A study for corrosion behavior of a new-type weathering steel used in harsh marine environment [J]. Constr. Build. Mater., 2020, 259: 119760
doi: 10.1016/j.conbuildmat.2020.119760
33 Morcillo M, Díaz I, Chico B, et al. Weathering steels: From empirical development to scientific design. A review [J]. Corros. Sci., 2014, 83: 6
doi: 10.1016/j.corsci.2014.03.006
34 Gutman E M, Solovioff G, Eliezer D. The mechanochemical behavior of type 316L stainless steel [J]. Corros. Sci., 1996, 38: 1141
doi: 10.1016/0010-938X(96)00008-X
35 Zhao T L, Wang S Q, Liu Z Y, et al. Effect of cathodic polarisation on stress corrosion cracking behaviour of a Ni(Fe, Al)-maraging steel in artificial seawater [J]. Corros. Sci., 2021, 179: 109176
doi: 10.1016/j.corsci.2020.109176
36 Morcillo M, González-Calbet J M, Jiménez J A, et al. Environmental conditions for akaganeite formation in marine atmosphere mild steel corrosion products and its characterization [J]. Corrosion, 2015, 71: 872
doi: 10.5006/1672
37 Liu Y W, Zhao H T, Wang Z Y. Initial corrosion behavior of carbon steel and weathering steel in Nansha marine atmosphere [J]. Acta Metall. Sin., 2020, 56: 1247
刘雨薇, 赵洪涛, 王振尧. 碳钢和耐候钢在南沙海洋大气环境中的初期腐蚀行为 [J]. 金属学报, 2020, 56: 1247
38 Dillmann P, Mazaudier F, Hœrlé S. Advances in understanding atmospheric corrosion of iron. I. Rust characterisation of ancient ferrous artefacts exposed to indoor atmospheric corrosion [J]. Corros. Sci., 2004, 46: 1401
doi: 10.1016/j.corsci.2003.09.027
39 Yamashita M, Misawa T. Recent progress in the study of protective rust-layer formation on weathering steel [A]. Corrosion 98 [C]. San Diego, California: NACE International, 1998
40 Sun M H, Yang X J, Du C W, et al. Distinct beneficial effect of Sn on the corrosion resistance of Cr-Mo low alloy steel [J]. J. Mater. Sci. Technol., 2021, 81: 175
doi: 10.1016/j.jmst.2020.12.014
41 Wei Y W, Zhang J, Lu X, et al. Effect of metal cations on corrosion behavior and surface structure of carbon steel in chloride ion atmosphere [J]. Acta Metall. Sin. (Engl. Lett.), 2020, 33: 1302
doi: 10.1007/s40195-020-01032-0
[1] WANG Lei, LIU Mengya, LIU Yang, SONG Xiu, MENG Fanqiang. Research Progress on Surface Impact Strengthening Mechanisms and Application of Nickel-Based Superalloys[J]. 金属学报, 2023, 59(9): 1173-1189.
[2] MA Dexin, ZHAO Yunxing, XU Weitai, WANG Fu. Effect of Gravity on Directionally Solidified Structure of Superalloys[J]. 金属学报, 2023, 59(9): 1279-1290.
[3] ZHANG Leilei, CHEN Jingyang, TANG Xin, XIAO Chengbo, ZHANG Mingjun, YANG Qing. Evolution of Microstructures and Mechanical Properties of K439B Superalloy During Long-Term Aging at 800oC[J]. 金属学报, 2023, 59(9): 1253-1264.
[4] LU Nannan, GUO Yimo, YANG Shulin, LIANG Jingjing, ZHOU Yizhou, SUN Xiaofeng, LI Jinguo. Formation Mechanisms of Hot Cracks in Laser Additive Repairing Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1243-1252.
[5] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[6] LI Jingren, XIE Dongsheng, ZHANG Dongdong, XIE Hongbo, PAN Hucheng, REN Yuping, QIN Gaowu. Microstructure Evolution Mechanism of New Low-Alloyed High-Strength Mg-0.2Ce-0.2Ca Alloy During Extrusion[J]. 金属学报, 2023, 59(8): 1087-1096.
[7] CHEN Liqing, LI Xing, ZHAO Yang, WANG Shuai, FENG Yang. Overview of Research and Development of High-Manganese Damping Steel with Integrated Structure and Function[J]. 金属学报, 2023, 59(8): 1015-1026.
[8] LIU Xingjun, WEI Zhenbang, LU Yong, HAN Jiajia, SHI Rongpei, WANG Cuiping. Progress on the Diffusion Kinetics of Novel Co-based and Nb-Si-based Superalloys[J]. 金属学报, 2023, 59(8): 969-985.
[9] SUN Rongrong, YAO Meiyi, WANG Haoyu, ZHANG Wenhuai, HU Lijuan, QIU Yunlong, LIN Xiaodong, XIE Yaoping, YANG Jian, DONG Jianxin, CHENG Guoguang. High-Temperature Steam Oxidation Behavior of Fe22Cr5Al3Mo-xY Alloy Under Simulated LOCA Condition[J]. 金属学报, 2023, 59(7): 915-925.
[10] LI Xiaohan, CAO Gongwang, GUO Mingxiao, PENG Yunchao, MA Kaijun, WANG Zhenyao. Initial Corrosion Behavior of Carbon Steel Q235, Pipeline Steel L415, and Pressure Vessel Steel 16MnNi Under High Humidity and High Irradiation Coastal-Industrial Atmosphere in Zhanjiang[J]. 金属学报, 2023, 59(7): 884-892.
[11] YUAN Jianghuai, WANG Zhenyu, MA Guanshui, ZHOU Guangxue, CHENG Xiaoying, WANG Aiying. Effect of Phase-Structure Evolution on Mechanical Properties of Cr2AlC Coating[J]. 金属学报, 2023, 59(7): 961-968.
[12] WANG Zhoutou, YUAN Qing, ZHANG Qingxiao, LIU Sheng, XU Guang. Microstructure and Mechanical Properties of a Cold Rolled Gradient Medium-Carbon Martensitic Steel[J]. 金属学报, 2023, 59(6): 821-828.
[13] FENG Aihan, CHEN Qiang, WANG Jian, WANG Hao, QU Shoujiang, CHEN Daolun. Thermal Stability of Microstructures in Low-Density Ti2AlNb-Based Alloy Hot Rolled Plate[J]. 金属学报, 2023, 59(6): 777-786.
[14] ZHANG Deyin, HAO Xu, JIA Baorui, WU Haoyang, QIN Mingli, QU Xuanhui. Effects of Y2O3 Content on Properties of Fe-Y2O3 Nanocomposite Powders Synthesized by a Combustion-Based Route[J]. 金属学报, 2023, 59(6): 757-766.
[15] WU Dongjiang, LIU Dehua, ZHANG Ziao, ZHANG Yilun, NIU Fangyong, MA Guangyi. Microstructure and Mechanical Properties of 2024 Aluminum Alloy Prepared by Wire Arc Additive Manufacturing[J]. 金属学报, 2023, 59(6): 767-776.
No Suggested Reading articles found!