|
|
Rust Formation Behavior and Mechanism of Q235 Carbon Steel in 5%NaCl Salt Spray Under Elastic Tensile Stress |
LI Qian, LIU Kai, ZHAO Tianliang( ) |
State Key Laboratory of Advanced Special Steel, School of Materials Science and Engineering, Shanghai University, Shanghai 200444, China |
|
Cite this article:
LI Qian, LIU Kai, ZHAO Tianliang. Rust Formation Behavior and Mechanism of Q235 Carbon Steel in 5%NaCl Salt Spray Under Elastic Tensile Stress. Acta Metall Sin, 2023, 59(6): 829-840.
|
Abstract As a structural steel material, carbon steel bears a certain extent of elastic tensile stress in actual service. Elastic tensile stress on steel is supposed to impact the electrochemical process and corrosion behavior, which may further influence the rusting behavior and the phase composition and structure of the formed rust layer. However, stresses on the steel substrate slightly influence the rust layer of carbon steel because no intrinsic change exists in the corrosion mechanism. Here, a remarkable effect of elastic tensile stress on Q235 carbon steel was found on the phase composition and structure of the rust layer formed in 5%NaCl salt spray. The effect on the rust layer was studied using SEM, XRD, and electrochemical impedance spectroscopy. The neutral salt spray test with four-point bending was used to preform the rust layer of Q235 steel under various stress levels. The results show that the elastic tensile stress accelerates the anodic dissolution, thereby promoting the generation of γ-FeOOH, which occurs faster in the electrolyte than the transformation of γ-FeOOH to α-FeOOH and Fe3O4/γ-Fe2O3 in the solid-liquid interface. Consequently, the mass fraction of γ-FeOOH in the rust layer increases as the stress level increases, whereas the mass fraction of α-FeOOH and Fe3O4/γ-Fe2O3 decreases accordingly. As the stress increases from 0 to 0.95σs (σs is yield strength), the mass fraction of Fe3O4/γ-Fe2O3 decreases from 53% to ~46%, the mass fraction of α-FeOOH decreases from ~30% to ~23%, and the mass fraction of γ-FeOOH increases from less than 17% to ~31%. Meanwhile, the phase composition change decreases the density and increases the thickness of the rust layer. Additionally, the acceleration of the anodic dissolution induced by the elastic tensile stress promotes the growth of the rust layer, which further increases the thickness of the rust layer. The increase in thickness and decrease in compactness of the rust layer jointly enhance the protective capability of the rust layer. The former increases the resistance to the electromigration of ions through the rust layer, and the latter mitigates the occlusion effect under the rust layer.
|
Received: 18 June 2021
|
|
Fund: National Key Research and Development Program of China(2017YFB0702100);Sailing Program for Young Science and Technology Talents of Shanghai(20YF1412900) |
Corresponding Authors:
ZHAO Tianliang, associate professor, Tel:15090998966, E-mail: tlzhao@shu.edu.com
|
1 |
Pan C, Cui Y, Liu L, et al. Effect of temperature on corrosion behavior of low-alloy steel exposed to a simulated marine atmospheric environment [J]. J. Mater. Eng. Perform., 2020, 29: 1400
doi: 10.1007/s11665-020-04649-5
|
2 |
Gao X L, Han Y, Fu G Q, et al. Evolution of the rust layers formed on carbon and weathering steels in environment containing chloride ions [J]. Acta Metall. Sin. (Engl. Lett.), 2016, 29: 1025
doi: 10.1007/s40195-016-0472-4
|
3 |
Guo M X, Tang J R, Gu T Z, et al. Corrosion behavior of 316L stainless steels exposed to salt lake atmosphere of Western China for 8 years [J]. Acta Metall. Sin. (Engl. Lett.), 2021, 34: 555
doi: 10.1007/s40195-020-01127-8
|
4 |
Alcántara J, de la Fuente D, Chico B, et al. Marine atmospheric corrosion of carbon steel: A review [J]. Materials, 2017, 10: 406
doi: 10.3390/ma10040406
|
5 |
Zhang X, Yang S W, Zhang W H, et al. Influence of outer rust layers on corrosion of carbon steel and weathering steel during wet-dry cycles [J]. Corros. Sci., 2014, 82: 165
doi: 10.1016/j.corsci.2014.01.016
|
6 |
Lair V, Antony H, Legrand L, et al. Electrochemical reduction of ferric corrosion products and evaluation of galvanic coupling with iron [J]. Corros. Sci., 2006, 48: 2050
doi: 10.1016/j.corsci.2005.06.013
|
7 |
Pan C, Han W, Wang Z Y, et al. Evolution of initial atmospheric corrosion of carbon steel in an industrial atmosphere [J]. J. Mater. Eng. Perform., 2016, 25: 5382
doi: 10.1007/s11665-016-2312-0
|
8 |
Wang C, Cao G W, Pan C, et al. Atmospheric corrosion of carbon steel and weathering steel in three environments [J]. J. Chin. Soc. Corros. Prot., 2016, 36: 39
|
|
汪 川, 曹公旺, 潘 辰 等. 碳钢、耐候钢在3种典型大气环境中的腐蚀规律研究 [J]. 中国腐蚀与防护学报, 2016, 36: 39
|
9 |
Pan C, Guo M X, Han W, et al. Study of corrosion evolution of carbon steel exposed to an industrial atmosphere [J]. Corros. Eng., Sci. Technol., 2019, 54: 241
|
10 |
Tiamiyu A, Eduok U, Odeshi A G, et al. Effect of prior plastic deformation and deformation rate on the corrosion resistance of AISI 321 austenitic stainless steel [J]. Mater. Sci. Eng., 2019, A745: 1
|
11 |
Zhao J J, Liu X B, Hu S, et al. Effect of Cl- concentration on the SCC behavior of 13Cr stainless steel in high-pressure CO2 environment [J]. Acta Metall. Sin. (Engl. Lett.), 2019, 32: 1459
doi: 10.1007/s40195-019-00923-1
|
12 |
Hao W K, Liu Z Y, Wu W, et al. Electrochemical characterization and stress corrosion cracking of E690 high strength steel in wet-dry cyclic marine environments [J]. Mater. Sci. Eng., 2018, A710: 318
|
13 |
Evans U R. The Corrosion and Oxidation of Metals: Scientific Principles and Practical Applications [M]. London: Edward Arnold Publishers Ltd., 1960: 1
|
14 |
Kim K M, Park J H, Kim H S, et al. Effect of plastic deformation on the corrosion resistance of ferritic stainless steel as a bipolar plate for polymer electrolyte membrane fuel cells [J]. Int. J. Hydrogen Energy, 2012, 37: 8459
doi: 10.1016/j.ijhydene.2012.02.127
|
15 |
Kim S J, Yun D W, Jung H G, et al. Numerical study on hydrogen permeation of ferritic steel evaluated under constant load [J]. Mater. Sci. Technol., 2017, 33: 149
doi: 10.1080/02670836.2016.1162001
|
16 |
Gao K, Li D, Pang X, et al. Corrosion behaviour of low-carbon bainitic steel under a constant elastic load [J]. Corros. Sci., 2010, 52: 3428
doi: 10.1016/j.corsci.2010.06.021
|
17 |
Zhao T L, Liu K, Li Q, et al. Elastic stress impacting on the rust layer of S450EW weathering steel through magnetomechanical effect [J]. Corros. Sci., 2021, 181: 109242
doi: 10.1016/j.corsci.2021.109242
|
18 |
Guo M X, Pan C, Wang Z Y, et al. A study on the initial corrosion behavior of carbon steel exposed to a simulated coastal-industrial atmosphere [J]. Acta Metall. Sin., 2018, 54: 65
doi: 10.11900/0412.1961.2017.00142
|
|
郭明晓, 潘 晨, 王振尧 等. 碳钢在模拟海洋工业大气环境中初期腐蚀行为研究 [J]. 金属学报, 2018, 54: 65
doi: 10.11900/0412.1961.2017.00142
|
19 |
Song X X, Huang S P, Wang C, et al. The initial corrosion behavior of carbon steel exposed to the coastal-industrial atmosphere in Hongyanhe [J]. Acta Metall. Sin., 2020, 56: 1355
|
|
宋学鑫, 黄松鹏, 汪 川 等. 碳钢在红沿河海洋工业大气环境中的初期腐蚀行为 [J]. 金属学报, 2020, 56: 1355
|
20 |
Fan Y M, Liu W, Sun Z T, et al. Effect of chloride ion on corrosion resistance of Ni-advanced weathering steel in simulated tropical marine atmosphere [J]. Constr. Build. Mater., 2021, 266: 120937
doi: 10.1016/j.conbuildmat.2020.120937
|
21 |
Hubbard C R, Snyder R L. RIR-measurement and use in quantitative XRD [J]. Powder Diffr., 1988, 3: 74
doi: 10.1017/S0885715600013257
|
22 |
Wu W, Dai Z Y, Liu Z Y, et al. Synergy of Cu and Sb to enhance the resistance of 3%Ni weathering steel to marine atmospheric corrosion [J]. Corros. Sci., 2021, 183: 109353
doi: 10.1016/j.corsci.2021.109353
|
23 |
Jüttner K. Electrochemical impedance spectroscopy (EIS) of corrosion processes on inhomogeneous surfaces [J]. Electrochim. Acta, 1990, 35: 1501
doi: 10.1016/0013-4686(90)80004-8
|
24 |
Li D G, Wang J D, Chen D R, et al. Influences of pH value, temperature, chloride ions and sulfide ions on the corrosion behaviors of 316L stainless steel in the simulated cathodic environment of proton exchange membrane fuel cell [J]. J. Power Sources, 2014, 272: 448
doi: 10.1016/j.jpowsour.2014.06.121
|
25 |
Freire L, Carmezim M J, Ferreira M G S, et al. The electrochemical behaviour of stainless steel AISI 304 in alkaline solutions with different pH in the presence of chlorides [J]. Electrochim. Acta, 2011, 56: 5280
doi: 10.1016/j.electacta.2011.02.094
|
26 |
Thee C, Hao L, Dong J H, et al. Numerical approach for atmospheric corrosion monitoring based on EIS of a weathering steel [J]. Acta Metall. Sin. (Engl. Lett.), 2015, 28: 261
doi: 10.1007/s40195-014-0193-5
|
27 |
Wu W, Cheng X Q, Zhao J B, et al. Benefit of the corrosion product film formed on a new weathering steel containing 3% nickel under marine atmosphere in Maldives [J]. Corros. Sci., 2020, 165: 108416
doi: 10.1016/j.corsci.2019.108416
|
28 |
Gao X L, Fu G Q, Zhu M Y. Effect of nickel on ion-selective property of rust formed on low-alloying weathering steel [J]. Acta Metall. Sin. (Engl. Lett.), 2012, 25: 295
|
29 |
Chen Y Y, Tzeng H J, Wei L I, et al. Corrosion resistance and mechanical properties of low-alloy steels under atmospheric conditions [J]. Corros. Sci., 2005, 47: 1001
doi: 10.1016/j.corsci.2004.04.009
|
30 |
Li S X, Hihara L H. In situ Raman spectroscopic identification of rust formation in Evans' droplet experiments [J]. Electrochem. Commun., 2012, 18: 48
doi: 10.1016/j.elecom.2012.02.014
|
31 |
Yamashita M, Konishi H, Kozakura T, et al. In situ observation of initial rust formation process on carbon steel under Na2SO4 and NaCl solution films with wet/dry cycles using synchrotron radiation X-rays [J]. Corros. Sci., 2005, 47: 2492
doi: 10.1016/j.corsci.2004.10.021
|
32 |
Jia J H, Cheng X Q, Yang X J, et al. A study for corrosion behavior of a new-type weathering steel used in harsh marine environment [J]. Constr. Build. Mater., 2020, 259: 119760
doi: 10.1016/j.conbuildmat.2020.119760
|
33 |
Morcillo M, Díaz I, Chico B, et al. Weathering steels: From empirical development to scientific design. A review [J]. Corros. Sci., 2014, 83: 6
doi: 10.1016/j.corsci.2014.03.006
|
34 |
Gutman E M, Solovioff G, Eliezer D. The mechanochemical behavior of type 316L stainless steel [J]. Corros. Sci., 1996, 38: 1141
doi: 10.1016/0010-938X(96)00008-X
|
35 |
Zhao T L, Wang S Q, Liu Z Y, et al. Effect of cathodic polarisation on stress corrosion cracking behaviour of a Ni(Fe, Al)-maraging steel in artificial seawater [J]. Corros. Sci., 2021, 179: 109176
doi: 10.1016/j.corsci.2020.109176
|
36 |
Morcillo M, González-Calbet J M, Jiménez J A, et al. Environmental conditions for akaganeite formation in marine atmosphere mild steel corrosion products and its characterization [J]. Corrosion, 2015, 71: 872
doi: 10.5006/1672
|
37 |
Liu Y W, Zhao H T, Wang Z Y. Initial corrosion behavior of carbon steel and weathering steel in Nansha marine atmosphere [J]. Acta Metall. Sin., 2020, 56: 1247
|
|
刘雨薇, 赵洪涛, 王振尧. 碳钢和耐候钢在南沙海洋大气环境中的初期腐蚀行为 [J]. 金属学报, 2020, 56: 1247
|
38 |
Dillmann P, Mazaudier F, Hœrlé S. Advances in understanding atmospheric corrosion of iron. I. Rust characterisation of ancient ferrous artefacts exposed to indoor atmospheric corrosion [J]. Corros. Sci., 2004, 46: 1401
doi: 10.1016/j.corsci.2003.09.027
|
39 |
Yamashita M, Misawa T. Recent progress in the study of protective rust-layer formation on weathering steel [A]. Corrosion 98 [C]. San Diego, California: NACE International, 1998
|
40 |
Sun M H, Yang X J, Du C W, et al. Distinct beneficial effect of Sn on the corrosion resistance of Cr-Mo low alloy steel [J]. J. Mater. Sci. Technol., 2021, 81: 175
doi: 10.1016/j.jmst.2020.12.014
|
41 |
Wei Y W, Zhang J, Lu X, et al. Effect of metal cations on corrosion behavior and surface structure of carbon steel in chloride ion atmosphere [J]. Acta Metall. Sin. (Engl. Lett.), 2020, 33: 1302
doi: 10.1007/s40195-020-01032-0
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|