Please wait a minute...
Acta Metall Sin  2021, Vol. 57 Issue (3): 363-374    DOI: 10.11900/0412.1961.2020.00271
Research paper Current Issue | Archive | Adv Search |
Microstructure and Mechanical Properties of Linear Friction Welding Joint of GH4169 Alloy/S31042 Steel
LI Yanmo1,2, GUO Xiaohui1, CHEN Bin1, LI Peiyue1, GUO Qianying2, DING Ran2, YU Liming2(), SU Yu3, LI Wenya3
1.Luoyang Ship Material Research Institute, Luoyang 471000, China
2.School of Materials Science and Engineering, Tianjin University, Tianjin 300354, China
3.School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, China
Cite this article: 

LI Yanmo, GUO Xiaohui, CHEN Bin, LI Peiyue, GUO Qianying, DING Ran, YU Liming, SU Yu, LI Wenya. Microstructure and Mechanical Properties of Linear Friction Welding Joint of GH4169 Alloy/S31042 Steel. Acta Metall Sin, 2021, 57(3): 363-374.

Download:  HTML  PDF(5551KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

S31042 steel is a typical 25Cr-20Ni type austenitic heat-resistant steel with excellent resistance to oxidation and creep rupture strength near 600oC. This austenitic steel is widely used as a super-heater or re-heater in ultra-super critical plants with steam specifications as high as 600oC and 25 MPa. To reduce CO2 emissions and improve power generation, the application of advanced ultra-super critical plants (steam parameters 700oC and 30 MPa) can be promoted. Owing to its excellent mechanical properties as well as good corrosion resistance at elevated temperature above 650oC, GH4169 alloys have the potential to be used in advanced ultra-super critical plants. Practically, it is meaningful to investigate the welding process of GH4169/S31042 dissimilar materials. In this work, the joint between dissimilar materials (S31042/GH4169) was studied by linear friction welding, and the microstructures and mechanical properties of the joint were investigated by OM, SEM, TEM, hardness testing, tensile testing, and creep testing at 700oC. Good metallurgic bonding was obtained under the optimized welding process parameters of 25 Hz (frequency), 2 mm (amplitude), 100 MPa of frictional pressure, and 150 MPa of forging pressure. Dynamic recrystallization occurred and the secondary phase particles precipitated within the weld zone. The microhardness of the welded joint was higher than that of the base metal, and the tensile properties of the joint were higher than S31042 steel, which is attributed to both fine grain and dispersion strengthening.

Key words:  GH4169 alloy      S31042 steel      linear friction welding      recrystallization      high-temperature performance     
Received:  21 July 2020     
ZTFLH:  TG132.33  
Fund: National Natural Science Foundation of China(U1660201)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2020.00271     OR     https://www.ams.org.cn/EN/Y2021/V57/I3/363

Fig.1  Appearance of S31042/GH4169 linear friction welded joint
Fig.2  OM image of S31042/GH4169 linear friction welded joint (A—weld zone, B—near-weld line thermo-mechanically affected zone, C—far-weld line thermo-mechanically affected zone, D—heat affected zone, E—parent metal)
Fig.3  SEM images of weld zone (and EDS) (a) and precipitates in GH4169 alloy (b) of S31042/GH4169 linear friction welded joint
Fig.4  TEM images (a, b), HRTEM image (c), and EDS analysis of precipitate (d) of weld zone in GH4169 superalloy (Inset in Fig.3c shows fast Fourier transform (FFT) pattern of TiAl3)
Fig.5  SEM images of various zones in S31042 steel
Fig.6  TEM image (a) and selected area electron diffraction (SAED) pattern (b) of precipitates in heat affected zone of S31042 steel
Fig.7  SEM images of various zones in GH4169 superalloy
Fig.8  EBSD maps of weld zone and thermo-mechanically affected zone of S31042/GH4169 linear friction welded joint
Fig.9  TEM images of S31042 steel from thermo-mechanically affected zone to weld zone
Fig.10  Microhardness of S31042/GH4169 linear friction welded joint
Fig.11  Engineering stress-strain curves of GH4169 superallloy, S31042 steel, and S31042/GH4169 linear friction welded joint
Fig.12  Full view (a) and SEM fractographies (b, c) of the fractured tensile specimen of S31042/GH4169 linear friction welded joint
Fig.13  Creep strain-time curves of S31042 steel and S31042/GH4169 linear friction welded joint at 700oC and 200 MPa
Fig.14  Longitudinal sections (a, b) and fractographies (c, d) of fractured creep specimens in S31042 steel (a, c) and S31042/GH4169 linear friction welded joint (b, d)
Fig.15  TEM image (a) and SAED pattern (b) of σ phase in fractured creep specimen of S31042/GH4169 linear friction welded joint
1 Du H, Cheng Y, Hou L, et al. Evolution of intergranular corrosion resistance for HR3C heat-resistant austenitic stainless steel at elevated temperature [J]. Corros. Eng. Sci. Technol., 2017, 52: 343
2 Wang J, Qiao Y F, Dong N, et al. The Influence of temperature on the oxidation mechanism in air of HR3C and aluminum-containing 22Cr-25Ni austenitic stainless steels [J]. Oxid. Met., 2018, 89: 713
3 Fang Y Y, Zhao J, Li X N. Precipitates in HR3C steel aged at high temperature [J]. Acta Metall. Sin., 2010, 46: 844
方圆圆, 赵 杰, 李晓娜. HR3C钢高温时效过程中的析出相 [J]. 金属学报, 2010, 46: 844
4 Li Y M, Liu Y C, Liu C X, et al. Mechanism for the formation of Z-phase in 25Cr-20Ni-Nb-N austenitic stainless steel [J]. Mater. Lett., 2018, 233: 16
5 Hu G D, Wang P, Li D Z, et al. Precipitate evolution in a modified 25Cr-20Ni austenitic heat resistant stainless steel during creep rupture test at 750oC [J]. Acta Metall. Sin., 2018, 54: 1705
胡国栋, 王 培, 李殿中等. 新型25Cr-20Ni奥氏体耐热不锈钢750℃持久实验过程中析出相演变 [J]. 金属学报, 2018, 54: 1705
6 Yang Y H, Zhu L H, Wang Q J, et al. Microstructural evolution and the effect on hardness and plasticity of S31042 heat-resistant steel during creep [J]. Mater. Sci. Eng., 2014, A608: 164
7 Wang J Z, Liu Z D, Bao H S, et al. Evolution of precipitates of S31042 heat resistant steel during 700oC aging [J]. J. Iron Steel Res. Int., 2013, 20: 113
8 Peng Z F, Ren W, Yang C, et al. Relationship between the evolution of phase parameters of grain boundary M23C6 and embrittlement of HR3C super-heater tubes in service [J]. Acta Metall. Sin., 2015, 51: 1325
彭志方, 任 文, 杨 超等. HR3C钢运行过热器管的脆化与晶界M23C6相参量演化的关系 [J]. 金属学报, 2015, 51: 1325
9 Wang B, Liu Z C, Cheng S C, et al. Microstructure evolution and mechanical properties of HR3C steel during long-term aging at high temperature [J]. J. Iron. Steel Res. Int., 2014, 21: 765
10 Hu Z F, Zhang Z. Investigation the effect of precipitating characteristics on the creep behavior of HR3C austenitic steel at 650oC [J]. Mater. Sci. Eng., 2019, A742: 451
11 Hari P R, Arivazhagan N, Rao M N, et al. Hot corrosion studies on alloy 617 OCC in the context of its use in advanced ultra-supercritical (A-USC) power plants [J]. Trans. Indian Inst. Met., 2017, 70: 775
12 Aung N N, Liu X B. Effect of temperature on coal ash hot corrosion resistance of Inconel 740 superalloy [J]. Corros. Sci., 2014, 82: 227
13 Zhang H J, Li C, Liu Y C, et al. Effect of hot deformation on γ″ and δ phase precipitation of Inconel 718 alloy during deformation & isothermal treatment [J]. J. Alloys Compd., 2017, 716: 65
14 Zhang H J, Li C, Guo Q Y, et al. Hot tensile behavior of cold-rolled Inconel 718 alloy at 650oC: The role of δ phase [J]. Mater. Sci. Eng., 2018, A722: 136
15 Zhang X, Li H W, Zhan M, et al. Electron force-induced dislocations annihilation and regeneration of a superalloy through electrical in-situ transmission electron microscopy observations [J]. J. Mater. Sci. Technol., 2020, 36: 79
16 Zhang H J, Li C, Guo Q Y, et al. Deformation mechanism of L12-γ′ phase in bimodal γ″-γ′ precipitation hardened Inconel 718 superalloy [J]. Adv. Eng. Mater., 2018, 20: 1800652
17 Zhang H J, Li C, Liu Y C, et al. Precipitation behavior during high-temperature isothermal compressive deformation of Inconel 718 alloy [J]. Mater. Sci. Eng., 2016, A677: 515
18 Liu Y C, Zhang H J, Guo Q Y, et al. Microstructure evolution of Inconel 718 superalloy during hot working and its recent development tendency [J]. Acta Metall. Sin., 2018, 54: 1653
刘永长, 张宏军, 郭倩颖等. Inconel 718变形高温合金热加工组织演变与发展趋势 [J]. 金属学报, 2018, 54: 1653
19 Li W Y, Vairis A, Preuss M, et al. Linear and rotary friction welding review [J]. Int. Mater. Rev., 2016, 61: 71
20 Shao Y, Li Y M, Liu C X, et al. Annealing process optimization of high frequency longitudinal resistance welded low-carbon ferritic stainless steel pipe [J]. Acta Metall. Sin., 2019, 55: 1367
邵 毅, 李彦默, 刘晨曦等. 低碳铁素体不锈钢高频直缝电阻焊管退火工艺优化 [J]. 金属学报, 2019, 55: 1367
21 Ji Y J, Zhang T C, Zhang L F, et al. Structure and mechanical property of TC17 linear friction welding joint [J]. Trans. China Weld. Inst., 2019, 40(9): 156
季亚娟, 张田仓, 张连锋等. TC17钛合金线性摩擦焊接头组织及性能 [J]. 焊接学报, 2019, 40(9): 156
22 Chang C C, Zhang T C, Li J, et al. Microstructure and properties of linear friction welded joint of hyperoxia TC4/TC17 dissimilar titanium alloys [J]. Trans. China Weld. Inst., 2019, 40(12): 109
常川川, 张田仓, 李 菊等. 高氧TC4/TC17钛合金线性摩擦焊接头组织特征及力学性能 [J]. 焊接学报, 2019, 40(12): 109
23 Zhang C C, Zhang T C, Jin J L. Microstructure and mechanical properties of linear friction welding joint of TC21/TC4-DT [J]. Trans. China Weld. Inst., 2019, 40(12): 133
张传臣, 张田仓, 金俊龙. TC21+TC4-DT线性摩擦焊接头组织与力学性能试验 [J]. 焊接学报, 2019, 40(12): 133
24 Chang C C, Zhang T C, Li J. Study on microstructure and microhardness of linear friction welded joints of Ti-22Al-27Nb alloy [J]. Trans. China Weld. Inst., 2019, 40(3): 140
常川川, 张田仓, 李 菊. Ti-22Al-27Nb合金线性摩擦焊接头组织与显微硬度分析 [J]. 焊接学报, 2019, 40(3): 140
25 Ma T J, Chen T, Li W Y, et al. Formation mechanism of linear friction welded Ti-6Al-4V alloy joint based on microstructure observation [J]. Mater. Charact., 2011, 62: 130
26 Ma T J, Li W Y, Xu Q Z, et al. Microstructure evolution and mechanical properties of linear friction welded 45 steel joint [J]. Adv. Eng. Mater., 2007, 9: 703
27 Yang X W, Li W Y, Li J L, et al. Finite element modeling of the linear friction welding of GH4169 superalloy [J]. Mater. Des., 2015, 87: 215
28 Ma T J, Xiao Y, Li W Y, et al. Investigation on microstructure and texture evolution of linear friction welded IN718 superalloy joints [J]. Trans. China Weld. Inst., 2016, 37(11): 119
马铁军, 肖 遥, 李文亚等. 线性摩擦焊IN718接头微观组织与织构演变 [J]. 焊接学报, 2016, 37(11): 119
29 Duan L J, Liu Y C. Relationships between elastic constants and EAM/FS potential functions for cubic crystals [J]. Acta Metall. Sin., 2020, 56: 112
段灵杰, 刘永长. 立方晶体弹性常数和EAM/FS势函数的关系 [J]. 金属学报, 2020, 56: 112
30 Ma T J, Yan M, Yang X W, et al. Microstructure evolution in a single crystal nickel-based superalloy joint by linear friction welding [J]. Mater. Des., 2015, 85: 613
31 Chen X, Xie F Q, Ma T J, et al. Effects of post-weld heat treatment on microstructure and mechanical properties of linear friction welded Ti2AlNb alloy [J]. Mater. Des., 2016, 94: 45
32 He J C, Zhang T C, Li J. Effect of heat treatment on microstructure and hardness of Ti2AlNb linear friction welding joint [J]. Trans. China Weld. Inst., 2019, 40(4): 119
贺建超, 张田仓, 李 菊. 热处理对Ti2AlNb线性摩擦焊接头组织与硬度的影响 [J]. 焊接学报, 2019, 40(4): 119
33 Li J, Zhang T C, Guo D L. Influence of heat treatment on microstructure and mechanical properties of TC17(α+β)/TC17(β) linear friction welding joint [J]. Trans. China Weld. Inst., 2018, 39(5): 97
李 菊, 张田仓, 郭德伦. 热处理对TC17(α+β)/TC17(β)线性摩擦焊接头组织及力学性能的影响 [J]. 焊接学报, 2018, 39(5): 97
34 Li Y M, Liu C X, Yu L M, et al. Effect of high-temperature ageing on microstructure and mechanical properties of linear friction welded S31042 steel joint [J]. Acta Metall. Sin., 2018, 54: 981
李彦默, 刘晨曦, 余黎明等. 高温时效对S31042钢线性摩擦焊接头组织和力学性能的影响 [J]. 金属学报, 2018, 54: 981
[1] DU Jinhui, BI Zhongnan, QU Jinglong. Recent Development of Triple Melt GH4169 Alloy[J]. 金属学报, 2023, 59(9): 1159-1172.
[2] ZHAO Peng, XIE Guang, DUAN Huichao, ZHANG Jian, DU Kui. Recrystallization During Thermo-Mechanical Fatigue of Two High-Generation Ni-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1221-1229.
[3] CHANG Songtao, ZHANG Fang, SHA Yuhui, ZUO Liang. Recrystallization Texture Competition Mediated by Segregation Element in Body-Centered Cubic Metals[J]. 金属学报, 2023, 59(8): 1065-1074.
[4] LI Fulin, FU Rui, BAI Yunrui, MENG Lingchao, TAN Haibing, ZHONG Yan, TIAN Wei, DU Jinhui, TIAN Zhiling. Effects of Initial Grain Size and Strengthening Phase on Thermal Deformation and Recrystallization Behavior of GH4096 Superalloy[J]. 金属学报, 2023, 59(7): 855-870.
[5] LOU Feng, LIU Ke, LIU Jinxue, DONG Hanwu, LI Shubo, DU Wenbo. Microstructures and Formability of the As-Rolled Mg- xZn-0.5Er Alloy Sheets at Room Temperature[J]. 金属学报, 2023, 59(11): 1439-1447.
[6] ZHANG Weidong, CUI Yu, LIU Li, WANG Wenquan, LIU Rui, LI Rui, WANG Fuhui. Corrosion Behavior of GH4169 Alloy in NaCl Solution Spray Environment at 600oC[J]. 金属学报, 2023, 59(11): 1475-1486.
[7] WU Caihong, FENG Di, ZANG Qianhao, FAN Shichun, ZHANG Hao, LEE Yunsoo. Microstructure Evolution and Recrystallization Behavior During Hot Deformation of Spray Formed AlSiCuMg Alloy[J]. 金属学报, 2022, 58(7): 932-942.
[8] REN Shaofei, ZHANG Jianyang, ZHANG Xinfang, SUN Mingyue, XU Bin, CUI Chuanyong. Evolution of Interfacial Microstructure of Ni-Co Base Superalloy During Plastic Deformation Bonding and Its Bonding Mechanism[J]. 金属学报, 2022, 58(2): 129-140.
[9] JIANG Weining, WU Xiaolong, YANG Ping, GU Xinfu, XIE Qingge. Formation of Dynamic Recrystallization Zone and Characteristics of Shear Texture in Surface Layer of Hot-Rolled Silicon Steel[J]. 金属学报, 2022, 58(12): 1545-1556.
[10] HU Chen, PAN Shuai, HUANG Mingxin. Strong and Tough Heterogeneous TWIP Steel Fabricated by Warm Rolling[J]. 金属学报, 2022, 58(11): 1519-1526.
[11] JIANG Jufu, ZHANG Yihao, LIU Yingze, WANG Ying, XIAO Guanfei, ZHANG Ying. Research on AlSi7Mg Alloy Semi-Solid Billet Fabricated by RAP[J]. 金属学报, 2021, 57(6): 703-716.
[12] NI Ke, YANG Yinhui, CAO Jianchun, WANG Liuhang, LIU Zehui, QIAN Hao. Softening Behavior of 18.7Cr-1.0Ni-5.8Mn-0.2N Low Nickel-Type Duplex Stainless Steel During Hot Compression Deformation Under Large Strain[J]. 金属学报, 2021, 57(2): 224-236.
[13] LI Jinshan, TANG Bin, FAN Jiangkun, WANG Chuanyun, HUA Ke, ZHANG Mengqi, DAI Jinhua, KOU Hongchao. Deformation Mechanism and Microstructure Control of High Strength Metastable β Titanium Alloy[J]. 金属学报, 2021, 57(11): 1438-1454.
[14] LIU Chao, YAO Zhihao, JIANG He, DONG Jianxin. The Feasibility and Process Control of Uniform Equiaxed Grains by Hot Deformation in GH4720Li Alloy with Millimeter-Level Coarse Grains[J]. 金属学报, 2021, 57(10): 1309-1319.
[15] GUO Qianying, LI Yanmo, CHEN Bin, DING Ran, YU Liming, LIU Yongchang. Effect of High-Temperature Ageing on Microstructure and Creep Properties of S31042 Heat-Resistant Steel[J]. 金属学报, 2021, 57(1): 82-94.
No Suggested Reading articles found!