Please wait a minute...
Acta Metall Sin  2020, Vol. 56 Issue (12): 1605-1616    DOI: 10.11900/0412.1961.2020.00119
Current Issue | Archive | Adv Search |
Effect of Coiling Temperature on Microstructure and Mechanical Properties of 500 MPa Grade Hot Stamping Axle Housing Steel
HUI Yajun1,2(), LIU Kun1, WU Kemin3, LI Qiuhan1, NIU Tao4, WU Qiaoling4
1 Sheet Metal Research Institute, Technology Institute of Shougang Group Co., Ltd., Beijing 100043, China
2 Beijing Key Laboratory of Green Recyclable Process for Iron & Steel Production of Shougang Group Co., Ltd., Beijing 100043, China
3 Manufacturing Department of Beijing Shougang Co., Ltd., Tangshan 064404, China
4 Qian Shun Technology Center of Shougang Group Co., Ltd., Tangshan 064404, China
Cite this article: 

HUI Yajun, LIU Kun, WU Kemin, LI Qiuhan, NIU Tao, WU Qiaoling. Effect of Coiling Temperature on Microstructure and Mechanical Properties of 500 MPa Grade Hot Stamping Axle Housing Steel. Acta Metall Sin, 2020, 56(12): 1605-1616.

Download:  HTML  PDF(5847KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

With the rapid development of the Chinese axle industry and the increasing demand for lightweight axle housings, the demand for a new type of hot stamping axle housing steel, which can ensure the yield strength meets the requirements after the hot stamping process, is becoming increasingly urgent. However, there are no published reports on the development of this new type of hot stamping axle housing steel. The aim of this study was to develop 500 MPa grade hot stamping axle housing steel. The effect of coiling temperature on the microstructure, precipitates, and mechanical properties of the 500 MPa hot stamping axle housing steel were studied by OM, SEM, and TEM. The results showed that the mechanical properties of the tested steel were significantly different when coiling at 600 and 570 ℃. When coiling at 570 ℃, the yield strength and tensile strength reached 538 MPa and 641 MPa, respectively, which were 165 MPa and 117 MPa higher than those at 600 ℃, whereas, the impact energy in the range of 20~-40 ℃ was lower than that at 600 ℃, especially low-temperature toughness. These are related to the differences in the microstructure and precipitates in test steel when coiling at different temperatures, especially the difference in the proportion of the high angle grain boundary (HAGB). The microstructure of the tested steel was composed of ferrite and pearlite when coiling at 600 ℃, average grain size of ferrite was 4.48 μm, proportion of HAGB was 68.1%, and average size of the precipitates was 8.4 nm, of which nanoscale precipitates with sizes below 10 nm accounted for approximately 70%. The microstructure was mainly composed of acicular ferrite, granular bainite, polygonal ferrite/quasi polygonal ferrite, and pearlite when the coiling temperature was reduced to 570 ℃, the average size of ferrite was 4.39 μm, ratio of HAGB was approximately 54.5%, average size of the precipitates was 6.4 nm, and nanoscale precipitates with a size below 10 nm accounted for 86%. The difference in the microstructure and the precipitates was mainly owing to the fact the bainite transformation temperature of the test steel was as high as 580 ℃, and nucleation rate and nucleation speed of the test steel was higher when coiling at 570 ℃ than that at 600 ℃. Thus, considering the high requirements on the shape quality, effect of the hot stamping process on the microstructure, and precipitates of the tested steel, the coiling temperatureof the test steel is more suitable at 600 ℃.

Key words:  coiling temperature      500 MPa grade      hot stamping axle housing steel      microstructure      precipitate     
Received:  16 April 2020     
ZTFLH:  TG142.1  

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2020.00119     OR     https://www.ams.org.cn/EN/Y2020/V56/I12/1605

Tc / ℃σs / MPaσb / MPaδ / %Yield ratio
60037352430.50.71
57053864125.00.84
Table 1  Mechanical properties of 500 MPa grade hot stamping axle housing steel

Tc

Ti

AkV / J
123Average
60020253258246252
-20227242218229
-40161217177185
-60160138136145
57020184182174180
-20147147150148
-4088596771
-6052424447
Table 2  Impact energies of 500 MPa grade hot stamping axle housing steel under different Ti
Fig.1  OM images of 500 MPa grade hot stamping axle housing steel with Tc=600 ℃ (a) and 570 ℃ (b) (P—pearlite, PF—polygonal ferrite, QPF—quasi-polygonal ferrite, GB—granular bainite, AF—acicular ferrite)
Fig.2  EBSD results of 500 MPa grade hot stamping axle housing steel when coiling at 600 ℃
Fig.3  EBSD results of 500 MPa grade hot stamping axle housing steel when coiling at 570 ℃
Fig.4  Bright-field (a, c) and dark-field (b, d) TEM images of distribution of precipitates in 500 MPa grade hot stamping axle housing steel when coiling at 600 ℃ (a, b) and 570 ℃ (c, d)
Fig.5  TEM images (a, c) and EDS analyses (b, d) of precipitates (showed by arrows) in 500 MPa grade hot stamping axle housing steel when coiling at 600 ℃ (a, b) and 570 ℃ (c, d)
Fig.6  Continuous cooling transition (CCT) curve of 500 MPa grade hot stamping axle housing steel (Ac3—temperature of all ferrite transform into austenite during heating, Ms—martensite transformation start temperature)
Fig.7  Microstructures of 500 MPa grade hot stamping axle housing steel at cooling rates of 0.1 ℃/s (a), 1 ℃/s (b), 3 ℃/s (c), 5 ℃/s (d), 8 ℃/s (e), 15 ℃/s (f), 20 ℃/s (g) and 30 ℃/s (h) (M—martensite, LB—lath bainite)
Fig.8  Variations of the equilibrium solid solution amount of V, C and N elements of 500 MPa grade hot stamping axle housing steel at different temperatures
Fig.9  Nucleation rate-temperature (NrT) curve (a) and precipitation-temperature-time (PTT) curve (b) of 500 MPa grade hot stamping axle housing steel in ferrite (I—nucleation rate, K—constant, subscript d indicates nucleation on the dis-location; t0.05da—nucleation start time of the precipitates when the precipitates nucleate on the dislocation line, and the nucleation rate quickly decays to zero; t0.05da/t0da—relative nucleation start time)
[1] Liu W X. Automotive Design [M]. Beijing: Tsinghua University Press, 2001: 67
(刘惟信. 汽车设计 [M]. 北京: 清华大学出版社, 2001: 67)
[2] Klein B, translated by Chen L H. Leichtbau-Konstruktion [M]. Beijing: Mechanical Industry Press, 2010: 198
(Klein B著, 陈力禾, 译. 轻量化设计: 计算基础与构件结构 [M]. 北京: 机械工业出版社, 2010: 198)
[3] Liu W X. Automotive Axle Design [M]. Beijing: Tsinghua University Press, 2004: 330
(刘惟信. 汽车车桥设计 [M]. 北京: 清华大学出版社, 2004: 330)
[4] Wang X. The method study based on the structure intensity analysis of the truck's drive axle [D]. Chongqing: Chongqing Jiaotong University, 2008
(王 星. 货车驱动桥壳结构强度分析方法研究 [D]. 重庆: 重庆交通大学, 2008)
[5] Chen J R. Automobile Structure (Part 2) [M]. 3rd Ed., Beijing: Mechanical Industry Press, 2009: 154
(陈家瑞. 汽车构造(下册) [M]. 第3版,北京: 机械工业出版社, 2009: 154)
[6] Cheng L J, Zhao G Q, Zhao X H, et al. FEM simulation of forging process for the design of a rear axle bracket [J]. J. Plast. Eng., 2008, 15(1): 14
(程联军, 赵国群, 赵新海等. 有限元模拟在后轴支架锻造设计中的应用 [J]. 塑性工程学报, 2008, 15(1): 14)
[7] Wu S Q, Shi Z Y. Identification of vehicle axle loads based on FEM-Wavelet-Galerkin method [J]. J. Vib. Eng., 2006, 19: 494
(吴邵庆, 史治宇. 由有限元-Wavelet-Galerkin法识别桥面移动载荷 [J]. 振动工程学报, 2006, 19: 494)
[8] Li Y X, Lin Z Q, Jiang A Q, et al. Use of high strength steel sheet for lightweight and crashworthy car body [J]. Mater. Des., 2003, 24: 177
doi: 10.1016/S0261-3069(03)00021-9
[9] Li X L, Ouyang K J, Zhang Y, et al. Development and research of steel used in axle housing for 3-ton light-duty truck [J]. Automob. Sci. Technol., 2000, (3): 25
(李性林, 欧阳可居, 张 宇等. 三吨轻型车桥壳用钢的开发与应用研究 [J]. 汽车科技, 2000, (3): 25)
[10] Chu Y Z, Qi P, Di L H. Development of hot-rolled drawn axle-housing steel [J]. J. Univ. Sci. Technol., 1999, 21: 342
(初元璋, 祁 鹏, 狄丽华. 热轧冲压桥壳用钢板的研制开发 [J]. 北京科技大学学报, 1999, 21: 342)
[11] Liu D S, Song D, Wang G D, et al. Development of microalloyed automotive steel strip [J]. Iron Steel, 2000, 35(2): 41
(刘东升, 宋 丹, 王国栋等. 汽车桥壳用热连轧微合金高强钢板的研究 [J]. 钢铁, 2000, 35(2): 41)
[12] Wu J H, Ye X Y, Huang X J, et al. Research on hot-rolled and high-strength steel of 490 MPa automobile axle housings [J]. Sci. Technol. Liuzhou Steel, 2009, (suppl.): 57
(吴菊环, 叶晓喻, 黄徐晶等. 490 MPa级汽车桥壳用热轧高强钢板研制 [J]. 柳钢科技, 2009, (增刊): 57)
[13] Wang S S, Cao K C, Hao X Q, et al. Process research on DQK415 steel plate for automobile axle housings [J]. Wide Heavy Plate, 2010, 16(6): 19
(王绍松, 曹开宸, 郝小强等. 汽车桥壳用DQK415钢板的工艺研究 [J]. 宽厚板, 2010, 16(6): 19)
[14] Huang H H, Yao J Y, Liu R J, et al. Damage detection of axle housing based on metal magnetic memory testing technology [J]. J. Electron. Meas. Instrum., 2014, 28: 770
(黄海鸿, 姚结艳, 刘儒军等. 基于金属磁记忆技术的车桥桥壳损伤检测 [J]. 电子测量与仪器学报, 2014, 28: 770)
[15] Topac M M, Günal H, Kuralay N S. Fatigue failure prediction of a rear axle housing prototype by using finite element analysis [J]. Eng. Fail. Anal., 2009, 16: 1474
doi: 10.1016/j.engfailanal.2008.09.016
[16] Fujiwara K, Okaguchi S, Ohtani H. Effect of hot deformation on bainite structure in low carbon steels [J]. ISIJ Int., 1995, 35: 1006.
doi: 10.2355/isijinternational.35.1006
[17] Yong Q L. Secondary Phases in Steels [M]. Beijing: Metallurgical Industry Press, 2006: 175
(雍岐龙. 钢铁材料中的第二相 [M]. 北京: 冶金工业出版社, 2006: 175)
[18] Duan H, Shan Y Y, Yang K, et al. Experimental on process, microstructure and mechanical properties of X80 high strength pipeline steel for low temperature [J]. Iron Steel, 2020, 55(2): 103
(段 贺, 单以银, 杨 柯等. X80低温用高强度管线钢的工艺与组织性能试验 [J]. 钢铁, 2020, 55(2): 103)
[19] Hui Y J, Wu K M, Xu K H, et al. Development of 500 MPa grade high ductility square tube steel and its work hardening behavior [J]. Iron Steel, 2020, 55(2): 131
(惠亚军, 吴科敏, 许克好等. 500 MPa级高延性方管用钢的开发及加工硬化行为 [J]. 钢铁, 2020, 55(2): 131)
[20] Hui Y J, Pan H, Zhou N, et al. Study on strengthening mechanism of 650 MPa grade V-N microalloyed automobile beam steel [J]. Acta Metall. Sin., 2015, 51: 1481
doi: 10.11900/0412.1961.2015.00082
(惠亚军, 潘 辉, 周 娜等. 650 MPa级V-N微合金化汽车大梁钢强化机制研究 [J]. 金属学报, 2015, 51: 1481)
doi: 10.11900/0412.1961.2015.00082
[21] Yong Q L, Ma M T, Wu B R. Microalloyed Steel—Physical and Mechanical Metallurgy [M]. Beijing: China Machine Press, 1989: 57
(雍岐龙, 马鸣图, 吴宝榕. 微合金钢——物理和力学冶金 [M]. 北京: 机械工业出版社, 1989: 57)
[22] Zhang P C, Wu H B, Tang D, et al. Dissolving behaviors of carbonitrides in Nb-V-Ti and V-Ti microalloying steels [J]. Acta Metall. Sin., 2007, 43: 753
(张鹏程, 武会宾, 唐 荻等. Nb-V-Ti和V-Ti微合金钢中碳氮化物的回溶行为 [J]. 金属学报, 2007, 43: 753)
[23] Wang P W, Zhao X H, Du C Z, et al. Analysis of high temperature mechanical properties of vanadium microalloyed steel [J]. Steel Rolling, 2020, 37(1): 45
(王培文, 赵新华, 杜传治等. 钒微合金钢的高温力学性能分析 [J]. 轧钢, 2020, 37(1): 45)
[24] Chen Z Y, Chen Z G, Qin X Y. Influence of cooling speed on microstructure of Nb-V microalloyed high strength steel [J]. Iron Steel Vanadium Titanium, 2010, 31(3): 59
(陈振业, 陈子刚, 秦秀英. 冷却速度对Nb-V微合金化高强度钢显微组织的影响 [J]. 钢铁钒钛, 2010, 31(3): 59)
[25] Gao F, Qian T C, Wang R Z. Phase transformation characteristics of vanadium microalloying low carbon bainitic steel in continuous cooling process [J]. J. Iron Steel Res., 2011, 23(12): 40
(高 飞, 钱天才, 王瑞珍. 钒微合金化低碳贝氏体钢的连续冷却相变特性 [J]. 钢铁研究学报, 2011, 23(12): 40)
[26] Brownrigg A, Prior G K. Hardenability reduction in VN microalloyed eutectoid steels [J]. Scr. Mater., 2002, 46: 357
doi: 10.1016/S1359-6462(01)01251-9
[27] Liu H H, Fu P X, Liu H W, et al. Effect of vanadium micro-alloying on the microstructure evolution and mechanical properties of 718H pre-hardened mold steel [J]. J. Mater. Sci. Technol., 2019, 35: 2526
doi: 10.1016/j.jmst.2019.04.033
[28] Gwon H, Kim J K, Shin S, et al. The effect of vanadium micro-alloying on the microstructure and the tensile behavior of TWIP steel [J]. Mater. Sci. Eng., 2017, A696: 416
[29] Li Y, Milbourn D, Baker T. Effect of vanadium microalloying on the HAZ microstructure and properties of low carbon steels [J]. J. Iron Steel Res. Int., 2011, 18(suppl.): 393
[30] Ishikawa F, Takahashi T, Ochi T. Intragranular ferrite nucleation in medium-carbon vanadium steels [J]. Metall. Mater. Trans., 1994, 25A: 929
[1] WANG Lei, LIU Mengya, LIU Yang, SONG Xiu, MENG Fanqiang. Research Progress on Surface Impact Strengthening Mechanisms and Application of Nickel-Based Superalloys[J]. 金属学报, 2023, 59(9): 1173-1189.
[2] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[3] ZHANG Leilei, CHEN Jingyang, TANG Xin, XIAO Chengbo, ZHANG Mingjun, YANG Qing. Evolution of Microstructures and Mechanical Properties of K439B Superalloy During Long-Term Aging at 800oC[J]. 金属学报, 2023, 59(9): 1253-1264.
[4] LU Nannan, GUO Yimo, YANG Shulin, LIANG Jingjing, ZHOU Yizhou, SUN Xiaofeng, LI Jinguo. Formation Mechanisms of Hot Cracks in Laser Additive Repairing Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1243-1252.
[5] LI Jingren, XIE Dongsheng, ZHANG Dongdong, XIE Hongbo, PAN Hucheng, REN Yuping, QIN Gaowu. Microstructure Evolution Mechanism of New Low-Alloyed High-Strength Mg-0.2Ce-0.2Ca Alloy During Extrusion[J]. 金属学报, 2023, 59(8): 1087-1096.
[6] CHEN Liqing, LI Xing, ZHAO Yang, WANG Shuai, FENG Yang. Overview of Research and Development of High-Manganese Damping Steel with Integrated Structure and Function[J]. 金属学报, 2023, 59(8): 1015-1026.
[7] LIU Xingjun, WEI Zhenbang, LU Yong, HAN Jiajia, SHI Rongpei, WANG Cuiping. Progress on the Diffusion Kinetics of Novel Co-based and Nb-Si-based Superalloys[J]. 金属学报, 2023, 59(8): 969-985.
[8] SUN Rongrong, YAO Meiyi, WANG Haoyu, ZHANG Wenhuai, HU Lijuan, QIU Yunlong, LIN Xiaodong, XIE Yaoping, YANG Jian, DONG Jianxin, CHENG Guoguang. High-Temperature Steam Oxidation Behavior of Fe22Cr5Al3Mo-xY Alloy Under Simulated LOCA Condition[J]. 金属学报, 2023, 59(7): 915-925.
[9] LU Yuhua, WANG Haizhou, LI Dongling, FU Rui, LI Fulin, SHI Hui. A Quantitative and Statistical Method of γ' Precipitates in Superalloy Based on the High-Throughput Field Emission Scanning Eelectron Microscope[J]. 金属学报, 2023, 59(7): 841-854.
[10] FENG Aihan, CHEN Qiang, WANG Jian, WANG Hao, QU Shoujiang, CHEN Daolun. Thermal Stability of Microstructures in Low-Density Ti2AlNb-Based Alloy Hot Rolled Plate[J]. 金属学报, 2023, 59(6): 777-786.
[11] WANG Fa, JIANG He, DONG Jianxin. Evolution Behavior of Complex Precipitation Phases in Highly Alloyed GH4151 Superalloy[J]. 金属学报, 2023, 59(6): 787-796.
[12] GUO Fu, DU Yihui, JI Xiaoliang, WANG Yishu. Recent Progress on Thermo-Mechanical Reliability of Sn-Based Alloys and Composite Solder for Microelectronic Interconnection[J]. 金属学报, 2023, 59(6): 744-756.
[13] ZHANG Deyin, HAO Xu, JIA Baorui, WU Haoyang, QIN Mingli, QU Xuanhui. Effects of Y2O3 Content on Properties of Fe-Y2O3 Nanocomposite Powders Synthesized by a Combustion-Based Route[J]. 金属学报, 2023, 59(6): 757-766.
[14] WU Dongjiang, LIU Dehua, ZHANG Ziao, ZHANG Yilun, NIU Fangyong, MA Guangyi. Microstructure and Mechanical Properties of 2024 Aluminum Alloy Prepared by Wire Arc Additive Manufacturing[J]. 金属学报, 2023, 59(6): 767-776.
[15] ZHANG Dongyang, ZHANG Jun, LI Shujun, REN Dechun, MA Yingjie, YANG Rui. Effect of Heat Treatment on Mechanical Properties of Porous Ti55531 Alloy Prepared by Selective Laser Melting[J]. 金属学报, 2023, 59(5): 647-656.
No Suggested Reading articles found!