Please wait a minute...
Acta Metall Sin  2020, Vol. 56 Issue (8): 1155-1164    DOI: 10.11900/0412.1961.2019.00454
Current Issue | Archive | Adv Search |
Study of the Hot Deformation and Processing Map of 31%B4Cp/6061Al Composites
ZHOU Li1, LI Ming1, WANG Quanzhao2(), CUI Chao3, XIAO Bolv2, MA Zongyi2
1 School of Electromechanical and Vehicle Engineering, Yantai University, Yantai 264005, China
2 Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
3 School of Materials Science and Engineering, Harbin Institute of Technology Weihai, Weihai 264209, China
Cite this article: 

ZHOU Li, LI Ming, WANG Quanzhao, CUI Chao, XIAO Bolv, MA Zongyi. Study of the Hot Deformation and Processing Map of 31%B4Cp/6061Al Composites. Acta Metall Sin, 2020, 56(8): 1155-1164.

Download:  HTML  PDF(3927KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

B4Cp/Al composite has the advantages of light weight, good stability, high neutron absorption capacity and excellent mechanical properties, and is increasingly used in nuclear industry for storage and transportation of spent fuels. However, due to the obvious difference in the mechanical properties between the reinforcement and the aluminum matrix, the deformation of B4Cp/Al composite is quite difficult. In this study, the hot compression behavior of 31%B4Cp/6061Al (volume fraction) composite fabricated by powder metallurgy was investigated in the temperature range of 375~525 ℃ and strain rate range of 0.001~10 s-1 with Gleeble-3800 thermal simulator system. Based on the modified dynamic material model (MDMM), the power dissipation efficiency and processing maps were established, the instability zones and stable area of hot deformation were determined, and the microstructure evolution during hot compression were analyzed. The results show that the temperature and strain rate have significant influences on the flow stress of 31%B4Cp/6061Al composite, and the flow stress increases with decreasing temperature or with increasing strain rate. The optimum processing domains for 31%B4Cp/6061Al composite are at temperatures of 480~525 ℃ with strain rates of 0.01~0.04 s-1. However, the processing instability area is mainly concentrated in low temperature and high strain rate, and increases with the increase of strain. During the hot compressing, the microstructure evolution is influenced by hot processing parameters, such as the strain, temperature and strain rate. The higher the strain is, the more serious the grain deformation is. With increasing deformation temperature or decreasing strain rate, the size of the dynamic recrystallization grain in matrix increases obviously.

Key words:  B4Cp/6061Al composites      hot deformation      processing map      microstructure     
Received:  27 December 2019     
ZTFLH:  TG339  
Fund: National Natural Science Foundation of China(U1508216);National Natural Science Foundation of China(51771194);Natural Science Foundation of Shandong Province(ZR2019MEE074)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2019.00454     OR     https://www.ams.org.cn/EN/Y2020/V56/I8/1155

Fig.1  Schematic of hot compression processing
Fig.2  OM image of 31%B4Cp/6061Al composite
Fig.3  True stress-true strain curves of 31%B4Cp/6061Al composites under different temperatures and strain rates (ε˙)
(a) ε˙=0.01 s-1 (b) ε˙=0.1 s-1 (c) ε˙=1 s-1 (d) ε˙=10 s-1
Fig.4  Peak stress distributions of 31%B4Cp/6061Al composites under different deformation conditions
Color online
ε˙ / s-1375 ℃400 ℃425 ℃450 ℃475 ℃500 ℃525 ℃
0.0189.3473.9067.4061.7756.6938.6635.52
0.1107.0092.8986.8076.4570.8160.0152.52
1126.18113.58103.7594.4085.9179.6165.38
10158.00146.00133.39124.92112.96102.0492.53
Table 1  Peak stresses of 31%B4Cp/6061Al composites under different deformation conditions
Fig.5  Power dissipation maps of 31%B4Cp/6061Al composites at strains of 0.1 (a), 0.3 (b), 0.5 (c) and 0.7 (d) (The contour numbers represent coefficients of power dissipation (η)
Color online
Fig.6  Instability zones of 31%B4Cp/6061Al composites at strains of 0.1 (a), 0.3 (b), 0.5 (c) and 0.7 (d) (The contours represent instability factors (ξ), and the blue regions less than zero are the unstable regions, while the yellow regions greater than or equal to zero are the stable regions)
Color online
Fig.7  Processing maps for 31%B4Cp/6061Al composites at strains of 0.1 (a), 0.3 (b), 0.5 (c) and 0.7 (d) (I—instability domain, II—machinable domain, III—optimal processing domain)
Color online
StrainDomainT / ℃ε˙ / s-1
0.1I385~4503.16~10
II435~5250.01~1
475~5251~10
III500~5250.01~0.031
0.3I275~4352.80~10
II420~5250.01~0.39
505~5250.39~10
III490~5250.01~0.025
0.5I375~4552.51~10
II426~5250.01~0.1
III480~5250.01~0.039
0.7I375~4502.23~10
II438~5250.01~0.1
III480~5200.01~0.021
Table 2  Hot processing parameters of 31%B4Cp/6061Al composites
Fig.8  Low (a, b) and high (c, d) magnified SEM images of 31%B4Cp/6061Al composites at temperatures and strain rates of 500 ℃, 0.01 s-1 (a, c) and 400 ℃, 10 s-1 (b, d)
Fig.9  Distribution of strain of 31%B4Cp/6061Al composites at temperature of 475 ℃ and strain rate of 10 s-1 after hot compression
Color online
Fig.10  OM images of 31%B4Cp/6061Al composites at temperature of 475 ℃ and strain rate of 10 s-1 at areas A (a), B (b) and C (c) in Fig.9
Fig.11  OM images of 31%B4Cp/6061Al composites at central area of specimen under temperatures and strain rates of 450 ℃, 0.01 s-1 (a), 450 ℃, 1 s-1 (b), 500 ℃, 0.01 s-1 (c) and 500 ℃, 1 s-1 (d)
[1] Liu B, Huang W M, Huang L, et al. Size-dependent compression deformation behaviors of high particle content B4C/Al composites [J]. Mater. Sci. Eng., 2012, A534: 530
[2] Bie B X, Huang J Y, Su B, et al. Dynamic tensile deformation and damage of B4C-reinforced Al composites: Time-resolved imaging with synchrotron X-rays [J]. Mater. Sci. Eng., 2016, A664: 86
[3] Zhou L, Zhang P F, Wang Q Z, et al. Multi-scale study on the fracture behavior of hot compression B4C/6061Al composite [J]. Acta Metall. Sin., 2019, 55: 911
doi: 10.11900/0412.1961.2018.00453
(周 丽, 张鹏飞, 王全兆等. B4C/6061Al复合材料热压缩断裂行为的多尺度研究 [J]. 金属学报, 2019, 55: 911)
doi: 10.11900/0412.1961.2018.00453
[4] Xiao B L, Huang Z Y, Ma K, et al. Research on hot deformation behaviors of discontinuously reinforced aluminum composites [J]. Acta Metall. Sin., 2019, 55: 59
doi: 10.11900/0412.1961.2018.00461
(肖伯律, 黄治冶, 马 凯等. 非连续增强铝基复合材料的热变形行为研究进展 [J]. 金属学报, 2019, 55: 59)
doi: 10.11900/0412.1961.2018.00461
[5] Shi W C, Shan D B. Effect of whisker breakage on the forgeability and the tensile properties of the forged 2024Al/Al18B4O33w composite [J]. Mater. Charact., 2018, 135: 303
[6] El-Sabbagh A M, Soliman M, Taha M A, et al. Effect of rolling and heat treatment on tensile behaviour of wrought Al-SiCp composites prepared by stir-casting [J]. J. Mater. Process. Technol., 2013, 213: 1669
[7] Raj R. Development of a processing map for use in warm-forming and hot-forming processes [J]. Metall. Trans., 1981, 12A: 1089
[8] Rajamuthamilselvan M, Ramanathan S, Karthikeyan R. Processing map for hot working of SiCp/7075 Al composites [J]. Trans. Nonferrous Met. Soc. China, 2010, 20: 668
[9] Hao S M, Xie J P, Wang A Q, et al. Hot deformation behavior and processing map of SiCp/2024Al composite [J]. Rare Met. Mater. Eng., 2014, 43: 2912
[10] Ramanathan S, Karthikeyan R, Ganasen G. Development of processing maps for 2124Al/SiCp composites [J]. Mater. Sci. Eng., 2006, A441: 321
[11] Hao S M, Xie J P, Wang A Q, et al. Hot deformation behaviors of 35%SiCp/2024Al metal matrix composites [J]. Trans. Nonferrous Met. Soc. China, 2014, 24: 2468
doi: 10.1016/S1003-6326(14)63372-0
[12] Gangolu S, Rao A G, Sabirov I, et al. Development of constitutive relationship and processing map for Al-6.65Si-0.44Mg alloy and its composite with B4C particulates [J]. Mater. Sci. Eng., 2016, A655: 256
[13] Li Y L, Wang W X, Zhou J, et al. Hot deformation behaviors and processing maps of B4C/Al6061 neutron absorber composites [J]. Mater. Charact., 2017, 124: 107
[14] Shao J C, Xiao B L, Wang Q Z, et al. Constitutive flow behavior and hot workability of powder metallurgy processed 20 vol.%SiCp/2024Al composite [J]. Mater. Sci. Eng., 2010, A527: 7865
[15] Galiyev A, Kaibyshev R, Gottstein G. Correlation of plastic deformation and dynamic recrystallization in magnesium alloy ZK60 [J]. Acta. Mater., 2001, 49: 1199
[16] Zhu Y P, Jin P P, Zhao P T, et al. Hot deformation behavior of Mg2B2O5 whiskers reinforced AZ31B magnesium composite fabricated by stir-casting [J]. Mater. Sci. Eng., 2013, A573: 148
[17] Murty S V S N, Sarma M S, Rao B N. On the evaluation of efficiency parameters in processing maps [J]. Metall. Mater. Trans., 1997, 28A: 1581
[18] Huang Z Y, Zhang X X, Xiao B L, et al. Hot deformation mechanisms and microstructure evolution of SiCp/2014Al composite [J]. J. Alloys Compd., 2017, 722: 145
[19] Yang Q Y, Deng Z H, Zhang Z Q, et al. Effects of strain rate on flow stress behavior and dynamic recrystallization mechanism of Al-Zn-Mg-Cu aluminum alloy during hot deformation [J]. Mater. Sci. Eng., 2016, A662: 204
[20] Peng W W, Zeng W D, Wang Q J, et al. Effect of processing parameters on hot deformation behavior and microstructural evolution during hot compression of as-cast Ti60 titanium alloy [J]. Mater. Sci. Eng., 2014, A593: 16
[21] Prasad Y V R K. Dynamic materials model: Basis and principles [J]. Metall. Mater. Trans., 1996, 27A: 235
[22] Prasad Y V R K, Gegel H L, Doraivelu S M, et al. Modeling of dynamic material behavior in hot deformation: Forging of Ti-6242 [J]. Metall. Trans., 1984, 15A: 1883
[23] Chakravartty J K, Prasad Y V R K, Asundi M K. Processing map for hot working of alpha-zirconium [J]. Metall. Trans., 1991, 22A: 829
[24] Prasad Y V R K. Recent advances in the science of mechanical processing [J]. Indian J. Technol., 1990, 28: 435
[25] Wang C X, Yu F X, Zhao D Z, et al. Hot deformation and processing maps of DC cast Al-15%Si alloy [J]. Mater. Sci. Eng., 2013, A577: 73
[26] Xiao B L, Fan J Z, Tian X F, et al. Hot deformation and processing map of 15%SiCp/2009 Al composite [J]. J. Mater. Sci., 2005, 40: 5757
[27] Zhou L, Cui C, Wang Q Z, et al. Constitutive equation and model validation for a 31 vol.% B4Cp/6061Al composite during hot compression [J]. J. Mater. Sci. Technol., 2018, 34: 1730
[1] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[2] WANG Lei, LIU Mengya, LIU Yang, SONG Xiu, MENG Fanqiang. Research Progress on Surface Impact Strengthening Mechanisms and Application of Nickel-Based Superalloys[J]. 金属学报, 2023, 59(9): 1173-1189.
[3] ZHANG Leilei, CHEN Jingyang, TANG Xin, XIAO Chengbo, ZHANG Mingjun, YANG Qing. Evolution of Microstructures and Mechanical Properties of K439B Superalloy During Long-Term Aging at 800oC[J]. 金属学报, 2023, 59(9): 1253-1264.
[4] LU Nannan, GUO Yimo, YANG Shulin, LIANG Jingjing, ZHOU Yizhou, SUN Xiaofeng, LI Jinguo. Formation Mechanisms of Hot Cracks in Laser Additive Repairing Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1243-1252.
[5] LIU Xingjun, WEI Zhenbang, LU Yong, HAN Jiajia, SHI Rongpei, WANG Cuiping. Progress on the Diffusion Kinetics of Novel Co-based and Nb-Si-based Superalloys[J]. 金属学报, 2023, 59(8): 969-985.
[6] CHEN Liqing, LI Xing, ZHAO Yang, WANG Shuai, FENG Yang. Overview of Research and Development of High-Manganese Damping Steel with Integrated Structure and Function[J]. 金属学报, 2023, 59(8): 1015-1026.
[7] LI Jingren, XIE Dongsheng, ZHANG Dongdong, XIE Hongbo, PAN Hucheng, REN Yuping, QIN Gaowu. Microstructure Evolution Mechanism of New Low-Alloyed High-Strength Mg-0.2Ce-0.2Ca Alloy During Extrusion[J]. 金属学报, 2023, 59(8): 1087-1096.
[8] LI Fulin, FU Rui, BAI Yunrui, MENG Lingchao, TAN Haibing, ZHONG Yan, TIAN Wei, DU Jinhui, TIAN Zhiling. Effects of Initial Grain Size and Strengthening Phase on Thermal Deformation and Recrystallization Behavior of GH4096 Superalloy[J]. 金属学报, 2023, 59(7): 855-870.
[9] SUN Rongrong, YAO Meiyi, WANG Haoyu, ZHANG Wenhuai, HU Lijuan, QIU Yunlong, LIN Xiaodong, XIE Yaoping, YANG Jian, DONG Jianxin, CHENG Guoguang. High-Temperature Steam Oxidation Behavior of Fe22Cr5Al3Mo-xY Alloy Under Simulated LOCA Condition[J]. 金属学报, 2023, 59(7): 915-925.
[10] ZHANG Deyin, HAO Xu, JIA Baorui, WU Haoyang, QIN Mingli, QU Xuanhui. Effects of Y2O3 Content on Properties of Fe-Y2O3 Nanocomposite Powders Synthesized by a Combustion-Based Route[J]. 金属学报, 2023, 59(6): 757-766.
[11] WU Dongjiang, LIU Dehua, ZHANG Ziao, ZHANG Yilun, NIU Fangyong, MA Guangyi. Microstructure and Mechanical Properties of 2024 Aluminum Alloy Prepared by Wire Arc Additive Manufacturing[J]. 金属学报, 2023, 59(6): 767-776.
[12] WANG Fa, JIANG He, DONG Jianxin. Evolution Behavior of Complex Precipitation Phases in Highly Alloyed GH4151 Superalloy[J]. 金属学报, 2023, 59(6): 787-796.
[13] FENG Aihan, CHEN Qiang, WANG Jian, WANG Hao, QU Shoujiang, CHEN Daolun. Thermal Stability of Microstructures in Low-Density Ti2AlNb-Based Alloy Hot Rolled Plate[J]. 金属学报, 2023, 59(6): 777-786.
[14] GUO Fu, DU Yihui, JI Xiaoliang, WANG Yishu. Recent Progress on Thermo-Mechanical Reliability of Sn-Based Alloys and Composite Solder for Microelectronic Interconnection[J]. 金属学报, 2023, 59(6): 744-756.
[15] LIU Manping, XUE Zhoulei, PENG Zhen, CHEN Yulin, DING Lipeng, JIA Zhihong. Effect of Post-Aging on Microstructure and Mechanical Properties of an Ultrafine-Grained 6061 Aluminum Alloy[J]. 金属学报, 2023, 59(5): 657-667.
No Suggested Reading articles found!