Please wait a minute...
Acta Metall Sin  2020, Vol. 56 Issue (8): 1084-1090    DOI: 10.11900/0412.1961.2019.00404
Current Issue | Archive | Adv Search |
Diffusion Bonding of Copper and 304 Stainless Steel with an Interlayer of CoCrFeMnNi High-Entropy Alloy
DING Wen, WANG Xiaojing(), LIU Ning(), QIN Liang
School of Materials Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, China
Cite this article: 

DING Wen, WANG Xiaojing, LIU Ning, QIN Liang. Diffusion Bonding of Copper and 304 Stainless Steel with an Interlayer of CoCrFeMnNi High-Entropy Alloy. Acta Metall Sin, 2020, 56(8): 1084-1090.

Download:  HTML  PDF(1698KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

During the dissimilar materials bonding of copper and 304 stainless steel, micro-voids and micro-cracks can propagate into the bond region because of Kirkendall effect, and have a strong impact on the mechanical and physical properties of conjunct. Copper and 304 stainless steel was bonded by utilizing vacuum solid-state diffusion method with an interlayer of CoCrFeMnNi high-entropy alloy, and the influence of temperature on diffusion reaction mechanism and properties was investigated by using SEM, EDS and microhardness test. The second Fick's law was adopted to calculate the diffusion coefficient of Cu/Fe in CoCrFeMnNi high-entropy alloy. The phase components of the diffusion interface were detected by XRD, and the famous phase-selection-criteria was also used to discuss the phase formation. The results showed that the diffusion interface was well bonded and all the elements diffused mutually at the temperature range of 800~900 ℃, the diffusion rate of Cu/Fe in CoCrFeMnNi high-entropy alloy was increased with the increasing temperature, and no intermetallic compounds were detected at the diffusion interface, and the microhardness increased continuously near the diffusion interface. It was investigated that CoCrFeMnNi high-entropy alloy can be used as an effective diffusion barriers for dissimilar materials bonding of Cu/304 stainless steel.

Key words:  high-entropy alloy      vacuum diffusion      diffusion rate      reaction mechanism     
Received:  25 November 2019     
ZTFLH:  TG457.1  
Fund: National Natural Science Foundation of China(51541104);Postgraduate Research and Practice Innovation Program of Jiangsu Province(KYCX19-1674)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2019.00404     OR     https://www.ams.org.cn/EN/Y2020/V56/I8/1084

MaterialMnCrCoNiCSiPSMoCuFe
304SS1.9318.98-9.330.110.650.030.030.320.17Bal.
Electrolytic Cu--------99.95-
HEA19.2319.0720.5021.88------19.32
Table 1  Chemical compositions of welding materials
ElementVECAtomic radius / nmMelting point / ℃
Co90.1251495
Cr60.1281857
Fe80.1261538
Mn70.1351244
Ni100.1241453
Cu110.1281085
HEA--1290~1340
Table 2  Physiochemical properties for main multi-component alloys[25]
Fig.1  SEM images and elemental composition distributions of Cu/HEA/304SS diffusion samples produced at 800 ℃ (a), 850 ℃ (b) and 900 ℃ (c)
Fig.2  XRD spectra of the Cu/HEA/304SS diffusion couple after annealing at 850 ℃ (Interface—interface of Cu/HEA/304SS diffusion couple. Inset shows the enlarged detail of the diffraction peaks near 44°)
Fig.3  The microhardness near the interface at different temperatures (a) and the distribution of the hardness of the diffusion couple interface at 850 ℃ (b)
Color online
AtomCrFeMnNiCu
Co-4-1-506
Cr--12-712
Fe--0-213
Mn----84
Ni----4
Table 3  Mixing enthalpy (ΔHmix) of element pairs [25]

Temperature

Diffusion coupleElement composition (atomic fraction / %)
CoCrFeMnNiCu
800Cu/HEA side16.016.716.115.716.519.0
HEA/304SS side17.216.032.316.717.8-
850Cu/HEA side17.517.915.814.720.114.0
HEA/304SS side16.318.230.216.418.9-
900Cu/HEA side19.019.017.611.018.415.0
HEA/304SS side17.716.631.317.417.0-
Table 4  Chemical compositions of different regions of diffusion couple

Temperature

Diffusion couple

ΔHmix

(kJ·mol-1)

δ

%

VEC

ΔSmix

(J·K-1·mol-1)

Phase
800Cu/HEA side2.082.78.5712.26fcc
HEA/304SS side-3.442.98.0413.03fcc
850Cu/HEA side0.482.78.4912.54fcc
HEA/304SS side-3.602.88.0113.13fcc
900Cu/HEA side1.152.58.5212.40fcc
HEA/304SS side-3.452.98.0113.08fcc
Table 5  The calculation results of various parameters for Cu/HEA/304SS
[1] Yilmaz O, Aksoy M. Investigation of micro-crack occurrence conditions in diffusion bonded Cu-304 stainless steel couple [J]. J. Mater. Process. Technol., 2002, 121: 136
doi: 10.1016/S0924-0136(01)01224-9
[2] Yilmaz O, Çelik H. Electrical and thermal properties of the interface at diffusion-bonded and soldered 304 stainless steel and copper bimetal [J]. J. Mater. Process. Technol., 2003, 141: 67
doi: 10.1016/S0924-0136(03)00029-3
[3] Gao L, Li Z X, Li G D, et al. Research status and development of copper-steel welding [J]. Weld. Join., 2006, (12): 16
(高 禄, 栗卓新, 李国栋等. 铜-钢异种金属焊接的研究现状和进展 [J]. 焊接, 2006, (12): 16)
[4] Patra S, Arora K S, Shome M, et al. Interface characteristics and performance of magnetic pulse welded copper-steel tubes [J]. J. Mater. Process. Technol., 2017, 245: 278
doi: 10.1016/j.jmatprotec.2017.03.001
[5] Fu J, Huang J, Yao C W, et al. Laser butt welding for copper-steel joint [J]. Chin. J. Lasers, 2009, 36: 1256
doi: 10.3788/JCL
(付 俊, 黄 坚, 姚成武等. 铜钢激光对接焊研究 [J]. 中国激光, 2009, 36: 1256)
[6] Sabetghadam H, Hanzaki A Z, Araee A. Diffusion bonding of 410 stainless steel to copper using a nickel interlayer [J]. Mater. Charact., 2010, 61: 626
doi: 10.1016/j.matchar.2010.03.006
[7] Guo Y F, Wang B B, Guo Y Y, et al. Microstructure and mechanical property of two-step vacuum diffusion welded joint of ZK60/5083 using zinc as interlayer [J]. Hot Work. Technol., 2018, 47(17): 55
(郭雨菲, 王宾宾, 郭阳阳等. Zn作中间层的ZK60/5083二次真空扩散焊接头显微组织与力学性能 [J]. 热加工工艺, 2018, 47(17): 55)
[8] Chen Y F, Zhang Z L, Qiu R F. Microstructure and property of diffusion welded titanium alloy/stainless steel joint with Nb and Cu as composite interlayer [J]. Mater. Mech. Eng., 2018, 42(10): 77
(陈一帆, 张占领, 邱然锋. 以铌+铜为复合中间层扩散焊接钛合金/不锈钢接头的组织与性能 [J]. 机械工程材料, 2018, 42(10): 77)
[9] Liu Y L. The study of diffusion welding of high entropy alloy with aluminum, copper and stainless steel [D]. Lanzhou: Lanzhou University of Technology, 2016
(刘玉林. 高熵合金与铝、铜及不锈钢异种材料扩散焊研究 [D]. 兰州: 兰州理工大学, 2016)
[10] Yeh J W, Lin S J, Chin T S, et al. Formation of simple crystal structures in Cu-Co-Ni-Cr-Al-Fe-Ti-V alloys with multiprincipal metallic elements [J]. Metall. Mater. Trans., 2004, 35A: 2533
[11] Tong C J, Chen M R, Yeh J W, et al. Mechanical performance of the AlxCoCrCuFeNi high-entropy alloy system with multi principal elements [J]. Metall. Mater. Trans., 2005, 36A: 1263
[12] Liu N, Ding W, Wang X J, et al. Phases, microstructures and properties of multi-component FeCoNi-based alloys [J]. Mater. Sci. Technol., 2020, 36: 654
doi: 10.1080/02670836.2020.1726017
[13] Chen Y Y, Duval T, Hung U D, et al. Microstructure and electrochemical properties of high entropy alloys—A comparison with type-304 stainless steel [J]. Corros. Sci., 2005, 47: 2257
doi: 10.1016/j.corsci.2004.11.008
[14] Wu J M, Lin S J, Yeh J W, et al. Adhesive wear behavior of AlXCoCrCuFeNi high-entropy alloys as a function of aluminum content [J]. Wear, 2006, 261: 513
doi: 10.1016/j.wear.2005.12.008
[15] Chen C, Liu N, Zhang J, et al. Microstructure stability and oxidation behaviour of (FeCoNiMo)90(Al/Cr)10 high-entropy alloys [J]. Mater. Sci. Technol., 2019, 35: 1883
doi: 10.1080/02670836.2019.1652785
[16] Wu P H, Peng Z, Liu N, et al. The effect of Mn content on the microstructure and properties of CoCrCu0.1Fe0.15Mo1.5MnxNi near equiatomic alloys [J]. Mater. Trans., 2016, 57: 5
doi: 10.2320/matertrans.M2015295
[17] Wu P H, Liu N, Yang W, et al. Microstructure and solidification behavior of multi-component CoCrCux FeMoNi high-entropy alloys [J]. Mater. Sci. Eng., 2015, A642: 142
[18] Yeh J W. Physical metallurgy of high-entropy alloys [J]. JOM, 2015, 67: 2254
doi: 10.1007/s11837-015-1583-5
[19] Cai X Y, Tang Q H, Dai P Q. Microstructure evolution of CoCr-FeMnNi high-entropy alloy during quasi-static tensile [J]. Chin. J. Nonferrous Met., 2018, 28: 135
(蔡小勇, 唐群华, 戴品强. 准静态拉伸过程中CoCrFeMnNi高熵合金显微组织的演变 [J]. 中国有色金属学报, 2018, 28: 135)
[20] Tsai K Y, Tsai M H, Yeh J W. Sluggish diffusion in Co-Cr-Fe-Mn-Ni high-entropy alloys [J]. Acta Mater., 2013, 61: 4887
doi: 10.1016/j.actamat.2013.04.058
[21] Kireeva I V, Chumlyakov Y I, Pobedennaya Z V, et al. Orientation dependence of twinning in single crystalline CoCrFeMnNi high-entropy alloy [J]. Mater. Sci. Eng., 2017, A705: 176
[22] Park N, Lee B J, Tsuji N. The phase stability of equiatomic CoCr-FeMnNi high-entropy alloy: Comparison between experiment and calculation results [J]. J. Alloys Compd., 2017, 719: 189
doi: 10.1016/j.jallcom.2017.05.175
[23] Chen K, Zhai Q Y, Tian J, et al. Resistance welding of TA2 and Q235 base on high entropy interlayer alloys [J]. Mod. Weld., 2013, (8): 36
(陈 凯, 翟秋亚, 田 健等. 基于高熵合金中间层的TA2与Q235电阻焊研究 [J]. 现代焊接, 2013, (8): 36)
[24] Tsai M H, Yeh J W, Gan J Y. Diffusion barrier properties of AlMoNbSiTaTiVZr high-entropy alloy layer between copper and silicon [J]. Thin Solid Films, 2008, 516: 5527
doi: 10.1016/j.tsf.2007.07.109
[25] Takeuchi A, Inoue A. Classification of bulk metallic glasses by atomic size difference, heat of mixing and period of constituent elements and its application to characterization of the main alloying element [J]. Mater. Trans., 2005, 46: 2817
doi: 10.2320/matertrans.46.2817
[26] Lu J B, Peng Z Q, Ma M X, et al. CoCrCuFeMnNi high-entropy alloy coating prepared by plasma cladding on Q235 steel [J]. Heat Treat. Met., 2016, 41(4): 51
doi: 10.13251/j.issn.0254-6051.2016.04.012
(卢金斌, 彭竹琴, 马明星等. Q235钢等离子熔覆 CoCrCuFeMnNi高熵合金涂层 [J]. 金属热处理, 2016, 41(4): 51)
doi: 10.13251/j.issn.0254-6051.2016.04.012
[27] Luo J, Sheng G M, Yuan X J. Diffusion bonding of SSNC 304L/Cu [J]. J Cent. South Univ. (Sci. Technol.), 2013, 44: 55
(罗 军, 盛光敏, 袁新建. 表面自纳米化304L不锈钢/T2铜扩散连接 [J]. 中南大学学报(自然科学版), 2013, 44: 55)
[28] Zhang Y. Amorphous and High Entropy Alloys [M]. Beijing: Science Press, 2010: 78
(张 勇. 非晶和高熵合金 [M]. 北京: 科学出版社, 2010: 78)
[29] Guo S, Ng C, Lu J, et al. Effect of valence electron concentration on stability of fcc or bcc phase in high entropy alloys [J]. J. Appl. Phys., 2011, 109: 103505
doi: 10.1063/1.3587228
[1] ZHANG Haifeng, YAN Haile, FANG Feng, JIA Nan. Molecular Dynamic Simulations of Deformation Mechanisms for FeMnCoCrNi High-Entropy Alloy Bicrystal Micropillars[J]. 金属学报, 2023, 59(8): 1051-1064.
[2] LIU Junpeng, CHEN Hao, ZHANG Chi, YANG Zhigang, ZHANG Yong, DAI Lanhong. Progress of Cryogenic Deformation and Strengthening-Toughening Mechanisms of High-Entropy Alloys[J]. 金属学报, 2023, 59(6): 727-743.
[3] FENG Li, WANG Guiping, MA Kai, YANG Weijie, AN Guosheng, LI Wensheng. Microstructure and Properties of AlCo x CrFeNiCu High-Entropy Alloy Coating Synthesized by Cold Spraying Assisted Induction Remelting[J]. 金属学报, 2023, 59(5): 703-712.
[4] MIAO Junwei, WANG Mingliang, ZHANG Aijun, LU Yiping, WANG Tongmin, LI Tingju. Tribological Properties and Wear Mechanism of AlCr1.3TiNi2 Eutectic High-Entropy Alloy at Elevated Temperature[J]. 金属学报, 2023, 59(2): 267-276.
[5] HU Wenbin, ZHANG Xiaowen, SONG Longfei, LIAO Bokai, WAN Shan, KANG Lei, GUO Xingpeng. Corrosion Behavior of AlCoCrFeNi2.1 Eutectic High-Entropy Alloy in Sulfuric Acid Solution[J]. 金属学报, 2023, 59(12): 1644-1654.
[6] HAN Linzhi, MU Juan, ZHOU Yongkang, ZHU Zhengwang, ZHANG Haifeng. Effect of Heat Treatment Temperature on Microstructure and Mechanical Properties of Ti0.5Zr1.5NbTa0.5Sn0.2 High-Entropy Alloy[J]. 金属学报, 2022, 58(9): 1159-1168.
[7] ZHAO Xiaofeng, LI Ling, ZHANG Han, LU Jie. Research Progress in High-Entropy Alloy Bond Coat Material for Thermal Barrier Coatings[J]. 金属学报, 2022, 58(4): 503-512.
[8] XU Liujie, ZONG Le, LUO Chunyang, JIAO Zhaolin, WEI Shizhong. Toughening Pathways and Regulatory Mechanisms of Refractory High-Entropy Alloys[J]. 金属学报, 2022, 58(3): 257-271.
[9] ZHANG Jinyu, QU Qimeng, WANG Yaqiang, WU Kai, LIU Gang, SUN Jun. Research Progress on Irradiation Effects and Mechanical Properties of Metal/High-Entropy Alloy Nanostructured Multilayers[J]. 金属学报, 2022, 58(11): 1371-1384.
[10] AN Zibing, MAO Shengcheng, ZHANG Ze, HAN Xiaodong. Strengthening-Toughening Mechanism and Mechanical Properties of Span-Scale Heterostructure High-Entropy Alloy[J]. 金属学报, 2022, 58(11): 1441-1458.
[11] CUI Hongzhi, JIANG Di. Research Progress of High-Entropy Alloy Coatings[J]. 金属学报, 2022, 58(1): 17-27.
[12] SUN Shijie, TIAN Yanzhong, ZHANG Zhefeng. Strengthening and Toughening Mechanisms of Precipitation- Hardened Fe53Mn15Ni15Cr10Al4Ti2C1 High-Entropy Alloy[J]. 金属学报, 2022, 58(1): 54-66.
[13] WANG Hongwei, HE Zhufeng, JIA Nan. Microstructure and Mechanical Properties of a FeMnCoCr High-Entropy Alloy with Heterogeneous Structure[J]. 金属学报, 2021, 57(5): 632-640.
[14] WANG Yihan, YUAN Yuan, YU Jiabin, WU Honghui, WU Yuan, JIANG Suihe, LIU Xiongjun, WANG Hui, LU Zhaoping. Design for Thermal Stability of Nanocrystalline Alloys Based on High-Entropy Effects[J]. 金属学报, 2021, 57(4): 403-412.
[15] DING Jun, WANG Zhangjie. Local Chemical Order in High-Entropy Alloys[J]. 金属学报, 2021, 57(4): 413-424.
No Suggested Reading articles found!