Please wait a minute...
Acta Metall Sin  2019, Vol. 55 Issue (5): 566-574    DOI: 10.11900/0412.1961.2018.00540
Current Issue | Archive | Adv Search |
Effect of Hot Band Annealing Processes on Texture and Formability of 19Cr2Mo1W Ferritic Stainless Steel
Houlong LIU,Mingyu MA,Lingling LIU,Liangliang WEI,Liqing CHEN()
1. State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang 110819, China
Cite this article: 

Houlong LIU,Mingyu MA,Lingling LIU,Liangliang WEI,Liqing CHEN. Effect of Hot Band Annealing Processes on Texture and Formability of 19Cr2Mo1W Ferritic Stainless Steel. Acta Metall Sin, 2019, 55(5): 566-574.

Download:  HTML  PDF(13885KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Low-cost ferritic stainless steels with excellent oxidation resistance and anti-corrosion ability are widely used in the fields of household appliances, hardware decoration, architectural structures, fuel cells and automobile exhaust systems. In order to achieve good formability of the ferritic stainless steel, the annealing process of hot-rolled sheet is crucial. As a newly developed 444-type heat-resistant ferritic stainless steel containing W and Ce, however, the influence of hot band annealing process of 19Cr2Mo1W ferritic stainless steel on its formability is not clear and need to have a deep understanding. In this work, the effect of annealing temperature of hot band on the microstructure, texture and formability of this steel was studied by means of XRD, EBSD, roughness measurement and formability test. The results indicated that although annealing processes were carried out at different temperatures after hot rolling, the characteristic of texture in the hot-rolled and annealed sheet was inherited to the cold-rolled sheet to some extent. The increased intensities of {223}<11ˉ0> and {111}<01ˉ1> texture components in the hot-rolled and annealed sheet were beneficial to improvement of the γ-fiber texture in the cold-rolled and annealed sheet. The extent of deviation from γ-fiber texture in the cold-rolled and annealed sheet was increased with increasing the intensities of {001}<11ˉ0>~{115}<11ˉ0> texture components in the cold-rolled sheet. An increased annealing temperature of the hot-rolled sheet could effectively weaken the intensities of {001}<11ˉ0>~{115}<11ˉ0> texture components in the cold-rolled sheet. In addition, the banded microstructures in the hot-rolled and annealed sheet were significantly reduced by increasing annealing temperature of the hot-rolled sheet, which improved the microstructure uniformity and formability of the cold-rolled and annealed sheet.

Key words:  ferritic stainless steel      hot band annealing      cold rolling and annealing      texture      formability     
Received:  07 December 2018     
ZTFLH:  TG142.71  
Fund: National Natural Science Foundation of China and Baowu Steel Group Co., Ltd.(U1660205)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2018.00540     OR     https://www.ams.org.cn/EN/Y2019/V55/I5/566

Fig.1  Constant φ2 =45° ODF section and the positions of the main orientations (φ1, Φ, φ2—Euler angles)
Fig.2  Constant φ2=45° ODF sections for central layers of hot-rolled ferritic stainless steel sheets annealed at 950 ℃ (a), 1000 ℃ (b), 1050 ℃ (c) and 1100 ℃ (d)Color online
Fig.3  Constant φ2=45° ODF sections for central layers of cold-rolled ferritic stainless steel sheets with hot band annealing at 950 ℃ (a), 1000 ℃ (b), 1050 ℃ (c) and 1100 ℃ (d)Color online
Fig.4  Constant φ2=45° ODF sections for central layers of cold-rolled and annealed ferritic stainless steel sheets with hot band annealing at 950 ℃ (a), 1000 ℃ (b), 1050 ℃ (c) and 1100 ℃ (d)Color online
Fig.5  Orientation imaging maps of hot-rolled ferritic stainless steel bands annealed at 950 ℃ (a), 1000 ℃ (b), 1050 ℃ (c) and 1100 ℃ (d) (ND—normal direction, RD—rolling direction)Color online
Fig.6  Orientation imaging maps of the cold-rolled and annealed ferritic stainless steel sheets with hot band annealing at 950 ℃ (a), 1000 ℃ (b), 1050 ℃ (c) and 1100 ℃ (d)Color online

Annealing temperature

rˉ

Δr

Ra

μm

Rt

μm

δ

%

n

σ0.2

MPa

σb

MPa

9501.270.351.7010.5126.30.20403627
10001.360.231.348.2427.90.21396613
10501.62-0.090.926.1729.50.21394610
11001.720.160.896.1430.30.20390600
Table 1  Formability and mechanical properties of cold-rolled and annealed sheets with different annealing processes of hot-rolled band
Fig.7  Roughness profiles of cold-rolled and annealed sheets with hot band annealing at 950 ℃ (a), 1000 ℃ (b), 1050 ℃ (c) and 1100 ℃ (d)
Fig.8  Stress-strain curves of cold-rolled and annealed steels with hot band annealing at various temperatures
[1] WeiX, DongJ H, TongJ, et al. Influence of temperature on pitting corrosion resistance of Cr26Mo1 ultra pure high chromium ferrite stainless steel in 3.5% NaCl solution[J]. Acta Metall. Sin., 2012, 48: 502
[1] (魏 欣, 董俊华, 佟 健等. 温度对Cr26Mo1超纯高铬铁素体不锈钢在3.5%NaCl溶液中耐点蚀性能的影响 [J]. 金属学报, 2012, 48: 502)
[2] MalitckiiE, YagodzinskyyY, LehtoP, et al. Hydrogen effects on mechanical properties of 18%Cr ferritic stainless steel[J]. Mater. Sci. Eng., 2017, A700: 331
[3] GaoF, LiuZ Y, ZhangW N, et al. Textures and precipitates in a 17Cr% ferritic stainless steel[J]. Acta Metall. Sin., 2012, 48: 1166
[3] (高 飞, 刘振宇, 张维娜等. 17Cr%铁素体不锈钢中的第二相与织构 [J]. 金属学报, 2012, 48: 1166)
[4] LiuJ, LuoX H, HuX Q, et al. Effect of Ti and Nb micro-alloying on the microstructure of the ultra-purified 11%Cr ferrite stainless steels[J]. Acta Metall. Sin., 2011, 47: 688
[4] (刘 静, 罗兴宏, 胡小强等. Ti和Nb微合金化对超纯11%Cr铁素体不锈钢组织的影响 [J]. 金属学报, 2011, 47: 688)
[5] WeiL L, ChenL Q, MaM Y, et al. Oxidation behavior of ferritic stainless steels in simulated automotive exhaust gas containing 5 vol. % water vapor[J]. Mater. Chem. Phys., 2018, 205: 508
[6] WeiL L, ZhengJ H, ChenL Q, et al. High temperature oxidation behavior of ferritic stainless steel containing W and Ce[J]. Corros. Sci., 2018, 142: 79
[7] MaM Y, HeC L, ChenL Q, et al. Effect of W and Ce additions on the electrochemical corrosion behaviour of 444-type ferritic stainless steel[J]. Corros. Eng. Sci. Technol., 2018, 53: 199
[8] LiuH T, LiuZ Y, WangG D. Effect of annealing after hot rolling on formability of ultra-purified Cr17 steel[J]. Mater. Sci. Technol., 2011, 19(3): 19
[8] (刘海涛, 刘振宇, 王国栋. 热轧后退火对超纯Cr17钢成形性能的影响 [J]. 材料科学与工艺, 2011, 19(3): 19)
[9] MaX G, ZhaoJ W, DuW, et al. Effects of rolling processes on ridging generation of ferritic stainless steel[J]. Mater. Charact., 2018, 137: 201
[10] De AbreuH F G, BrunoA D S, TavaresS S M, et al. Effect of high temperature annealing on texture and microstructure on an AISI-444 ferritic stainless steel[J]. Mater. Charact., 2006, 57: 342
[11] HuhM Y, EnglerO. Effect of intermediate annealing on texture, formability and ridging of 17%Cr ferritic stainless steel sheet[J]. Mater. Sci. Eng., 2001, A308: 74
[12] HongS H, LeeD N. Recrystallization textures in cold-rolled Ti bearing IF steel sheet[J]. ISIJ Int., 2002, 42: 1278
[13] RayR K, JonasJ J, HookR E. Cold rolling and annealing textures in low carbon and extra low carbon steels[J]. Int. Mater. Rev., 1994, 39: 129
[14] CaiG J, LiC S, WangD G, et al. Investigation of annealing temperature on microstructure and texture of Fe-19Cr-2Mo-Nb-Ti ferritic stainless steel[J]. Mater. Charact., 2018, 141: 169
[15] ZhangC, ZhaoA M, DingR, et al. Effect of annealing temperature on formability of Cr17 ferritic stainless steel[J].Heat Treat. Metal., 2015, 40(4): 113
[15] (张 聪, 赵爱民, 丁 然等. 退火温度对Cr17铁素体不锈钢成形性能的影响 [J]. 金属热处理, 2015, 40(4): 113)
[16] GhoshP, ChromikR R, VasheghiB, et al. Effect of crystallographic texture on the bulk magnetic properties of non-oriented electrical steels[J]. J. Magn. Magn. Mater., 2014, 365: 14
[17] GaoF, LiuZ Y, LiuH T, et al. Texture evolution and formability under different hot rolling conditions in ultra purified 17%Cr ferritic stainless steels[J]. Mater. Charact., 2013, 75: 93
[18] InagakiH. Fundamental aspect of texture format ion in low carbon steel[J]. ISIJ Int., 1994, 34: 313
[19] DuW, JiangL Z, SunQ S, et al. Effect of hot band annealing processes on microstructure, texture and r-value of ferritic stainless steel[J]. J. Iron Steel Res. Int., 2010, 17: 58
[20] GaoF, LiuZ Y, LiuH T, et al. Evolution of through-thickness texture in ultra purified 17% Cr ferritic stainless steels[J]. J. Iron Steel Res. Int., 2013, 20: 31
[21] DanielD, JonasJ J. Measurement and prediction of plastic anisotropy in deep-drawing steels[J]. Metall. Mater. Trans., 1990, 21A: 331
[22] LiuH T, LiuZ Y, WangG D. Texture development and formability of strip cast 17% Cr ferritic stainless steel[J]. ISIJ Int., 2009, 49: 890
[23] DuW, Y, JiangL Z, SunQ S, et al. Microstructure, texture, and formability of Nb+Ti stabilized high purity ferritic stainless steel[J]. J. Iron Steel Res. Int., 2010, 17: 47
[24] ShinH J, AnJ K, ParkS H, et al. The effect of texture on ridging of ferritic stainless steel[J]. Acta Mater., 2003, 51: 4693
[25] MaX G, ZhaoJ W, DuW, et al. An analysis of ridging of ferritic stainless steel 430[J]. Mater. Sci. Eng., 2017, A685: 358
[1] CHANG Songtao, ZHANG Fang, SHA Yuhui, ZUO Liang. Recrystallization Texture Competition Mediated by Segregation Element in Body-Centered Cubic Metals[J]. 金属学报, 2023, 59(8): 1065-1074.
[2] LOU Feng, LIU Ke, LIU Jinxue, DONG Hanwu, LI Shubo, DU Wenbo. Microstructures and Formability of the As-Rolled Mg- xZn-0.5Er Alloy Sheets at Room Temperature[J]. 金属学报, 2023, 59(11): 1439-1447.
[3] JIANG Weining, WU Xiaolong, YANG Ping, GU Xinfu, XIE Qingge. Formation of Dynamic Recrystallization Zone and Characteristics of Shear Texture in Surface Layer of Hot-Rolled Silicon Steel[J]. 金属学报, 2022, 58(12): 1545-1556.
[4] YANG Ping, WANG Jinhua, MA Dandan, PANG Shufang, CUI Feng'e. Influences of Composition on the Transformation-Controlled {100} Textures in High Silicon Electrical Steels Prepared by Mn-Removal Vacuum Annealing[J]. 金属学报, 2022, 58(10): 1261-1270.
[5] DING Ning, WANG Yunfeng, LIU Ke, ZHU Xunming, LI Shubo, DU Wenbo. Microstructure, Texture, and Mechanical Properties of Mg-8Gd-1Er-0.5Zr Alloy by Multi-Directional Forging at High Strain Rate[J]. 金属学报, 2021, 57(8): 1000-1008.
[6] YAN Mengqi, CHEN Liquan, YANG Ping, HUANG Lijun, TONG Jianbo, LI Huanfeng, GUO Pengda. Effect of Hot Deformation Parameters on the Evolution of Microstructure and Texture of β Phase in TC18 Titanium Alloy[J]. 金属学报, 2021, 57(7): 880-890.
[7] ZUO Liang, LI Zongbin, YAN Haile, YANG Bo, ZHAO Xiang. Texturation and Functional Behaviors of Polycrystalline Ni-Mn-X Phase Transformation Alloys[J]. 金属学报, 2021, 57(11): 1396-1415.
[8] PAN Fusheng, JIANG Bin. Development and Application of Plastic Processing Technologies of Magnesium Alloys[J]. 金属学报, 2021, 57(11): 1362-1379.
[9] XU Zhanyi, SHA Yuhui, ZHANG Fang, ZHANG Huabing, LI Guobao, CHU Shuangjie, ZUO Liang. Orientation Selection Behavior During Secondary Recrystallization in Grain-Oriented Silicon Steel[J]. 金属学报, 2020, 56(8): 1067-1074.
[10] YU Lei,LUO Haiwen. Effect of Partial Recrystallization Annealing on Magnetic Properties and Mechanical Properties of Non-Oriented Silicon Steel[J]. 金属学报, 2020, 56(3): 291-300.
[11] CHENG Chao,CHEN Zhiyong,QIN Xushan,LIU Jianrong,WANG Qingjiang. Microstructure, Texture and Mechanical Property ofTA32 Titanium Alloy Thick Plate[J]. 金属学报, 2020, 56(2): 193-202.
[12] DU Zijie, LI Wenyuan, LIU Jianrong, SUO Hongbo, WANG Qingjiang. Study on the Uniformity of Structure and Mechanical Properties of TC4-DT Alloy Deposited by CMT Process[J]. 金属学报, 2020, 56(12): 1667-1680.
[13] Xin LI,Yuecheng DONG,Zhenhua DAN,Hui CHANG,Zhigang FANG,Yanhua GUO. Corrosion Behavior of Ultrafine Grained Pure Ti Processed by Equal Channel Angular Pressing[J]. 金属学报, 2019, 55(8): 967-975.
[14] Liping DENG,Kaixuan CUI,Bingshu WANG,Hongliang XIANG,Qiang LI. Microstructure and Texture Evolution of AZ31 Mg Alloy Processed by Multi-Pass Compressing Under Room Temperature[J]. 金属学报, 2019, 55(8): 976-986.
[15] Zheng LIU,Jianrong LIU,Zibo ZHAO,Lei WANG,Qingjiang WANG,Rui YANG. Microstructure and Tensile Property of TC4 Alloy Produced via Electron Beam Rapid Manufacturing[J]. 金属学报, 2019, 55(6): 692-700.
No Suggested Reading articles found!