Please wait a minute...
Acta Metall Sin  2019, Vol. 55 Issue (4): 445-456    DOI: 10.11900/0412.1961.2018.00449
Current Issue | Archive | Adv Search |
Research on Dynamic Recrystallization Behavior of 23Cr-2.2Ni-6.3Mn-0.26N Low Nickel TypeDuplex Stainless Steel
Yahui DENG,Yinhui YANG(),Jianchun CAO,Hao QIAN
School of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093, China
Cite this article: 

Yahui DENG,Yinhui YANG,Jianchun CAO,Hao QIAN. Research on Dynamic Recrystallization Behavior of 23Cr-2.2Ni-6.3Mn-0.26N Low Nickel TypeDuplex Stainless Steel. Acta Metall Sin, 2019, 55(4): 445-456.

Download:  HTML  PDF(13546KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The difference of crystal structure and stacking fault energy (SFE) of two phases in duplex stainless steels (DSS) make different softening mechanism during hot deformation. Due to different austenite stability of Mn and Ni, the substitution of Mn for Ni will significantly affect dynamic recrystallization (DRX) behavior of compression deformation. The DRX behaviors of 23Cr-2.2Ni-6.3Mn-0.26N low nickel type DSS were studied in the deformation temperatures of 1073~1423 K and strain rates of 0.01~10 s-1 by using a thermal simulator. The results showed that the deformation procedure of samples are mainly softened by dynamic recovery (DRV) of two phases at low temperature and high deformation strain rate, and mainly softened by austenite DRX at high temperature and low deformation strain rate. At the low strain rates of 0.01 and 0.1 s-1, the grain size of austenite DRX increased with the increase of deformation temperature. The softening mechanism of samples are related to the Z parameter, and the deformation softening is mainly caused by austenite DRX under the condition of low Z value. Based on the thermal deformation equation, the apparent stress index of samples were calculated as 5.18, and the apparent activation energy of thermal deformation was calculated as 391.16 kJ/mol. The constitutive equation of the relationship between the peak flow stress and the Z parameter was established by hyperbolic sinusoidal model proposed by Sellars. The critical stress of DRX increases with increasing strain rate and decreasing deformation temperature, while the critical strain of DRX increases with the decrease of deformation temperature, and increases at first and then decreases with increasing strain rate (0.1~10 s-1) at low deformation temperature. The relationship between the DRX critical stress (strain) and peak stress (strain), as well as DRX characteristic parameters and Z parameter correlation models, and the austenite phase DRX volume fraction models were determined. Moreover, the DRX volume fraction models predict that the increase of strain rate and the decrease of deformation temperature can delay occurrence of DRX.

Key words:  duplex stainless steel      low nickel type      dynamic recrystallization      critical strain      critical stress     
Received:  20 September 2018     
ZTFLH:  TG142  
Fund: National Natural Science Foundation of China(No.51461024)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2018.00449     OR     https://www.ams.org.cn/EN/Y2019/V55/I4/445

Fig.1  True stress-true strain curves under the same strain rate and different deformation temperatures(a) 0.01 s-1 (b) 0.1 s-1 (c) 1 s-1 (d) 10 s-1
Fig.2  Typical microstructures of duplex stainless steels under different temperatures (T) and different strain rates (ε˙)(a) solid-solution state (b) T=1173 K, ε˙=0.01 s-1 (c) T=1323 K, ε˙=0.01 s-1(d) T=1423 K, ε˙=0.01 s-1 (e) T=1173 K, ε˙=0.1 s-1 (f) T=1323 K, ε˙=0.1 s-1(g) T=1423 K, ε˙=0.1 s-1 (h) T=1323 K, ε˙=1 s-1 (i) T=1173 K, ε˙=10 s-1(j) T=1323 K, ε˙=10 s-1 (k) T=1423 K, ε˙=10 s-1
Fig.3  Strain hardening rate (θ) curves of the samples at different temperatures (σ—stress,σc—critical stress, σp—peak stress, σs—steady stress)(a) 0.1 s-1 (b) 1 s-1 (c) 10 s-1
ε˙ / s-1T / Kεcεpσc / MPaσp / MPaσs / MPa
0.110730.145260.26283248.750274.1315269.2720
11730.120750.20557182.550196.3656175.3600
13230.100910.1577784.07686.157175.0038
14230.083830.1237153.27654.715047.8533
110730.160510.33020312.590340.7937333.6438
11730.130120.20899297.210303.6478291.0098
13230.116010.20568123.460128.2068121.7003
14230.106820.1957889.24290.459681.5782
1010730.160030.30253377.082397.2519372.7911
11730.128700.24051334.830346.5571318.7496
13230.080130.11041204.780211.6203198.3243
14230.071020.09170116.350119.3346117.2951
Table1  The characteristic parameters of duplex stainless steels
Fig.4  Relationships of σp-σc (a) and εp-εc (b) of the samples (r2—linear correlation coefficient)
Fig.5  Relationship between peak stress and strain rate and deformation temperature (α—material constant)(a) lnσp-lnε˙ (b) σp-lnε˙ (c) ln[sinh(ασp)]-lnε˙ (d) ln[sinh(ασp)]-1/T
Fig.6  
Fig.7  
Fig.8  Fitting the characteristic parameters and Z parameters(a) lnσc-lnZ (b) lnσp-lnZ (c) lnεc-lnZ (d) lnεp-lnZ
Fig.9  
Fig.10  Relationship between lnln(1/(1-X)) and ln((ε-εc)/εp) (X—volume fraction of dynamic recry-stallization)(a) 0.1 s-1 (b) 1 s-1
Fig.11  
Fig.12  
1 Shu X J, Zhang S Q, Song Z G. Experimental research on hot workability of 00Cr22Ni5Mo3N dual phase stainless steel [J]. Steel Pipe, 2004, 33(6): 15
1 舒先进, 张淑琴, 宋志刚. 00Cr22Ni5Mo3N双相不锈钢热加工性能的试验研究 [J]. 钢管, 2004, 33(6): 15)
2 Charles J, Chemelle P. The history of duplex developments nowadays DSS properties and duplex market future trends [J]. World Iron Steel, 2011, (6): 1
3 Feng H, Zhou X Y, Liu H, et al. Development and trend of hyper duplex stainless steels [J]. J. Iorn Steel Res., 2015, 27(4): 1
3 丰 涵, 周晓玉, 刘 虎等. 特超级双相不锈钢的发展现状及趋势 [J]. 钢铁研究学报, 2015, 27(4): 1)
4 Gao W, Luo J M, Yang J J. Research progress and application of double phase stainless steel [J]. Ordnan. Meter. Sci. Eng., 2005, 28(3): 61
4 高 娃, 罗建民, 杨建君. 双相不锈钢的研究进展及其应用 [J]. 兵器材料科学与工程, 2005, 28(3): 61)
5 Du C F, Zhan F, Yang Y H, et al. Research progress in nickel-saving duplex stainless steel [J]. Met. Funct. Mater., 2010, 17(5): 63
5 杜春风, 詹 凤, 杨银辉等. 节镍型双相不锈钢的研究进展 [J]. 金属功能材料, 2010, 17(5): 63)
6 Su Y S, Yang Y H, Cao J C, et al. Research on hot working behavior of low-nickel duplex stainless steel 2101 [J]. Acta Metall. Sin., 2018, 54: 485
6 苏煜森, 杨银辉, 曹建春等. 节Ni型2101双相不锈钢的高温热加工行为研究 [J]. 金属学报, 2018, 54: 485
7 Zhao X, Liu C H, Li Y N. Hot processing map of super duplex stainless steel UNS S32750 [J]. Hot Work. Technol., 2015, 44(15): 153
7 赵 新, 刘长红, 李亚宁. 超级双相不锈钢UNS S32750的热加工图 [J]. 热加工工艺, 2015, 44(15): 153)
8 Mao P L, Yang K, Su G Y. Hot deformation behavior of an as-cast duplex stainless steel [J]. J. Mater. Sci. Technol., 2003, 19: 379
9 Momeni A, Dehghani K, Poletti M C. Law of mixture used to model the flow behavior of a duplex stainless steel at high temperatures [J]. Mater. Chem. Phys., 2013, 139: 747
10 Momeni A, Dehghani K, Keshmiri H, et al. Hot deformation behavior and microstructural evolution of a superaustenitic stainless steel [J]. Mater. Sci. Eng., 2010, A527: 1605
11 Siegmund T, Werner E, Fischer F D. On the thermomechanical deformation behavior of duplex-type materials [J]. J. Mech. Phys. Solids, 1995, 43: 495
12 Piñol-Juez A, Iza-Mendia A, Gutiérrez I. δ/γ interface bondary sliding as a mechanism for strain accommodation during hot deformation in a duplex stainless steel [J]. Metall. Mater. Trans., 2000, 31A: 1671
13 Salehi M S, Serajzadeh S. A neural network model for prediction of static recrystallization kinetics under non-isothermal conditions [J]. Comput. Mater. Sci., 2010, 49: 773
14 Chen F, Cui Z S, Chen S J. Recrystallization of 30Cr2Ni4MoV ultra-super-critical rotor steel during hot deformation. Part I: Dynamic recrystallization [J]. Mater. Sci. Eng., 2012, A528: 5073
15 Chen X M, Lin Y C, Wen D X, et al. Dynamic recrystallization behavior of a typical nickel-based superalloy during hot deformation [J]. Mater. Des., 2014, 57: 568
16 Tong J, Fu W T, Lin G, et al. Hot deformation behavior of 00Cr25Ni7Mo4N super duplex stainless steel [J]. J. Iorn. Steel Res., 2007, 19(10): 40
16 童 骏, 傅万堂, 林 刚等. 00Cr25Ni7Mo4N超级双相不锈钢的高温变形行为 [J]. 钢铁研究学报, 2007, 19(10): 40)
17 Farnoush H, Momeni A, Dehghani K, et al. Hot deformation characteristics of 2205 duplex stainless steel based on the behavior of constituent phases [J]. Mater. Des., 2010, 31: 220
18 Liu Z Y, Li C G, Zhao Y, et al. Control on microstructures and properties of economical duplex stainless steel and its manufacturing technology [J]. Angang. Technol., 2016, (2): 1
18 刘振宇, 李成刚, 赵 岩等. 节约型双相不锈钢组织性能控制与制造技术 [J]. 鞍钢技术, 2016, (2): 1)
19 Lu P P, Wang A Q, Xie J P, et al. Effect of aging on σ phase precipitation and properties of 4A duplex stainless steel [J]. Mater. Rev., 2017, 31(16): 76
19 卢盼盼, 王爱琴, 谢敬佩等. 时效处理对4A双相不锈钢σ相析出及性能的影响 [J]. 材料导报, 2017, 31(16): 76)
20 Zhang M, Zhang M, Lu X K, et al. Effects of Ni to Cr mass ratio in flux-cored wire powder on microstructureand mechanical properties of duplex stainless steel weld seam [J]. Mater. Mech. Eng., 2017, 41(6): 5
20 张 敏, 张 明, 芦晓康等. 焊丝药粉中镍铬质量比对双相不锈钢焊缝显微组织与力学性能的影响 [J]. 机械工程材料, 2017, 41(6): 5)
21 Han D, Jiang Y M, Deng B, et al. Effect of aging time on electrochemical corrosion behavior of 2101 duplex stainless steel [J]. Aata Metall. Sin., 2009, 45: 919
21 韩 冬, 蒋益明, 邓 博等. 时效时间对2101双相不锈钢电化学腐蚀行为的影响 [J]. 金属学报, 2009, 45: 919
22 Liu Y Y. Study on microstructure and property evolution of LDX 2101 during thermal deformation [D]. Hangzhou: Zhejiang University, 2013
22 刘彦妍. 2101双相不锈钢热变形过程微观组织与性能演变的研究 [D]. 杭州: 浙江大学, 2013
23 Feng F C, Hong H P, Xiao Y. Dynamic recrystallization rule and model of 42CrMo4 steel [A]. The 9th China Steel Conference (CSM Biennial Conference [C]. Beijing: Metallurgical Industry Press, 2013: 1
23 冯富春, 洪慧平, 肖 玉. 42CrMo4钢动态再结晶规律及动态再结晶模型研究 [A]. 第九届中国钢铁年会论文集 [C]. 北京: 冶金工业出版社, 2013: 1)
24 Ma B. Microscopic-macroscopic multi-parameter coupling model building for low-alloy steel strip hot rolling process [D]. Qinhuangdao: Yanshan University, 2011
24 马 博. 低合金钢板带热轧过程微宏观多参数耦合建模 [D]. 秦皇岛: 燕山大学, 2011
25 Balancin O, Hoffmann W A M, Jonas J J. Influence of microstructure on the flow behavior of duplex stainless steels at high temperatures [J]. Metall. Mater. Trans., 2000, 31A: 1353
26 Imbert C A C, McQueen H J. Peak strength, strain hardening and dynamic restoration of A2 and M2 tool steels in hot deformation [J]. Mater. Sci. Eng., 2001, A313: 88
27 Yue C X, Zhang L W, Liao S L, et al. Research on the dynamic recrystallization behavior of GCr15 steel [J]. Mater. Sci. Eng., 2009, A499: 177
28 Cao J R, Liu Z D, Cheng S C, et al. The influence of strain rate and temperature on flow stress and critical dynamic recrystallisation of T122 steel [J]. Acta Metall. Sin., 2007, 43: 35
28 曹金荣, 刘正东, 程世长等. 应变速率和变形温度对T122耐热钢流变应力和临界动态再结晶行为的影响 [J]. 金属学报, 2007, 43: 35
29 Quan G Z, Yu C T, Liu Y Y, et al. Characterization of dynamic rescrystallization behavior of 20MnNiMo steel by thermal deformation [J]. Trans. Mater. Heat Treat., 2013, 34(8): 177
29 权国政, 余春堂, 刘莹莹等. 20MnNiMo钢热塑性变形与动态再结晶软化的耦合行为 [J]. 材料热处理学报, 2013, 34(8): 177)
30 Wang Y M, Hamza A V, Ma E. Temperature-dependent strain rate sensitivity and activation volume of nanocrystalline Ni [J]. Acta Mater., 2006, 54: 2715
31 Chen L, Zhang Y J, Li F, et al. Modeling of dynamic recrystallization behavior of 21Cr-11Ni-N-RE lean austenitic heat-resistant steel during hot deformation [J]. Mater. Sci. Eng., 2016, A663: 141
32 Mirzadeh H, Najafizadeh A. Hot deformation and dynamic recrystallization of 17-4 PH stainless steel [J]. ISIJ Int., 2013, 53: 680
33 Mirzadeh H, Cabrera J M, Najafizadeh A, et al. EBSD study of a hot deformed austenitic stainless steel [J]. Mater. Sci. Eng., 2012, A538: 236
34 Sellars C M, McTegart W J. On the mechanism of hot deformation [J]. Acta Metall., 1966, 14: 1136
35 Iza-Mendia A, Piñol-Juez A, Urcola J J, et al. Microstructural and mechanical behavior of a duplex stainless steel under hot working conditions [J]. Metall. Mater. Trans., 1998, 29A: 2975
36 Schramm R E, Reed R P. Stacking fault energies of seven commercial austenitic stainless steels [J]. Metall. Trans., 1975, 6A: 1345
37 Dai Y J, Tang D, Mi Z L, et al. The influence of manganese on the stacking fault energy and deformation mechanisms of the TWIP steel [J]. J. Mater. Eng., 2009, (7): 39
37 代永娟, 唐 荻, 米振莉等. 锰元素对TWIP钢层错能和变形机制的影响 [J]. 材料工程, 2009, (7): 39)
38 Wang M H, Li Y F, Wang W H, et al. Quantitative analysis of work hardening and dynamic softening behavior of low carbon alloy steel based on the flow stress [J]. Mater. Des., 2013, 45: 384
39 Kim S I, Yoo Y C. Dynamic recrystallization behavior of AISI 304 stainless steel [J]. Mater. Sci. Eng., 2001, A311: 108
40 Mirzadeh H, Najafizadeh A. The rate of dynamic recrystallization in 17-4 PH stainless steel [J]. Mater. Des., 2010, 31: 4577
41 Wang J, Xiao H, Xie H B, et al. Study on hot deformation behavior of carbon structural steel with flow stress [J]. Mater. Sci. Eng., 2012, A539: 294
42 Jonas J J, Quelennec X, Jiang L, et al. The Avrami kinetics of dynamic recrystallization [J]. Acta Mater., 2009, 57: 2748
43 Liu C S. Measuring the phase content of dual-phases stainless steel accurately [J]. Phys. Test. Chem. Anal.,(Part A, Phys. Test.), 2003, 39: 414
43 刘持森. 双相不锈钢中相含量的精确测定 [J]. 理化检验-物理分册, 2003, 39: 414
44 Liu Y G, Li M Q, Luo J. The modelling of dynamic recrystallization in the isothermal compression of 300M steel [J]. Mater. Sci. Eng., 2013, A574: 1
[1] LI Fulin, FU Rui, BAI Yunrui, MENG Lingchao, TAN Haibing, ZHONG Yan, TIAN Wei, DU Jinhui, TIAN Zhiling. Effects of Initial Grain Size and Strengthening Phase on Thermal Deformation and Recrystallization Behavior of GH4096 Superalloy[J]. 金属学报, 2023, 59(7): 855-870.
[2] LOU Feng, LIU Ke, LIU Jinxue, DONG Hanwu, LI Shubo, DU Wenbo. Microstructures and Formability of the As-Rolled Mg- xZn-0.5Er Alloy Sheets at Room Temperature[J]. 金属学报, 2023, 59(11): 1439-1447.
[3] WU Caihong, FENG Di, ZANG Qianhao, FAN Shichun, ZHANG Hao, LEE Yunsoo. Microstructure Evolution and Recrystallization Behavior During Hot Deformation of Spray Formed AlSiCuMg Alloy[J]. 金属学报, 2022, 58(7): 932-942.
[4] REN Shaofei, ZHANG Jianyang, ZHANG Xinfang, SUN Mingyue, XU Bin, CUI Chuanyong. Evolution of Interfacial Microstructure of Ni-Co Base Superalloy During Plastic Deformation Bonding and Its Bonding Mechanism[J]. 金属学报, 2022, 58(2): 129-140.
[5] JIANG Weining, WU Xiaolong, YANG Ping, GU Xinfu, XIE Qingge. Formation of Dynamic Recrystallization Zone and Characteristics of Shear Texture in Surface Layer of Hot-Rolled Silicon Steel[J]. 金属学报, 2022, 58(12): 1545-1556.
[6] CHEN Guo, WANG Xinbo, ZHANG Renxiao, MA Chengyue, YANG Haifeng, ZHOU Li, ZHAO Yunqiang. Effect of Tool Rotation Speed on Microstructure and Properties of Friction Stir Processed 2507 Duplex Stainless Steel[J]. 金属学报, 2021, 57(6): 725-735.
[7] NI Ke, YANG Yinhui, CAO Jianchun, WANG Liuhang, LIU Zehui, QIAN Hao. Softening Behavior of 18.7Cr-1.0Ni-5.8Mn-0.2N Low Nickel-Type Duplex Stainless Steel During Hot Compression Deformation Under Large Strain[J]. 金属学报, 2021, 57(2): 224-236.
[8] DENG Yahui, YANG Yinhui, PU Chaobo, NI Ke, PAN Xiaoyu. Effect of Mn Addition on High Temperature Tensile Behavior of 23%Cr Low Nickel Type Duplex Stainless Steel[J]. 金属学报, 2020, 56(7): 949-959.
[9] CHEN Wenxiong, HU Baojia, JIA Chunni, ZHENG Chengwu, LI Dianzhong. Post-Dynamic Softening of Austenite in a Ni-30%Fe Model Alloy After Hot Deformation[J]. 金属学报, 2020, 56(6): 874-884.
[10] ZHANG Yang, SHAO Jianbo, CHEN Tao, LIU Chuming, CHEN Zhiyong. Deformation Mechanism and Dynamic Recrystallization of Mg-5.6Gd-0.8Zn Alloy During Multi-Directional Forging[J]. 金属学报, 2020, 56(5): 723-735.
[11] WANG Guiqin,WANG Qin,CHE Honglong,LI Yajun,LEI Mingkai. Effects of Silicon on the Microstructure and Propertiesof Cast Duplex Stainless Steel with Ultra-HighChromium and High Carbon[J]. 金属学报, 2020, 56(3): 278-290.
[12] WU Huajian, CHENG Renshan, LI Jingren, XIE Dongsheng, SONG Kai, PAN Hucheng, QIN Gaowu. Effect of Al Content on Microstructure and Mechanical Properties of Mg-Sn-Ca Alloy[J]. 金属学报, 2020, 56(10): 1423-1432.
[13] ZHANG Yong, LI Xinxu, WEI Kang, WAN Zhipeng, JIA Chonglin, WANG Tao, LI Zhao, SUN Yu, LIANG Hongyan. Hot Deformation Characteristics of Novel Wrought Superalloy GH4975 Extruded Rod Used for 850 ℃ Turbine Disc[J]. 金属学报, 2020, 56(10): 1401-1410.
[14] Xu LI,Qingbo YANG,Xiangze FAN,Yonglin GUO,Lin LIN,Zhiqing ZHANG. Influence of Deformation Parameters on Dynamic Recrystallization of 2195 Al-Li Alloy[J]. 金属学报, 2019, 55(6): 709-719.
[15] Miao JIN, Wenquan LI, Shuo HAO, Ruixue MEI, Na LI, Lei CHEN. Effect of Solution Temperature on Tensile Deformation Behavior of Mn-N Bearing Duplex Stainless Steel[J]. 金属学报, 2019, 55(4): 436-444.
No Suggested Reading articles found!