Please wait a minute...
Acta Metall Sin  2018, Vol. 54 Issue (12): 1725-1734    DOI: 10.11900/0412.1961.2018.00052
Orginal Article Current Issue | Archive | Adv Search |
Microstructure and Mechanical Properties of Additive Manufactured 2319 Alloy by Electron BeamFreeform Fabrication
Jing YU1,2, Jijie WANG2, Dingrui NI1(), Bolv XIAO1, Zongyi MA1, Xinglong PAN3
1 Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2 College of Material Science and Engineering, Shenyang Aerospace University, Shenyang 110036, China
3 Guilin THD Mech. & Elec. Engineering Co. Ltd., Guilin 541004, China;
Cite this article: 

Jing YU, Jijie WANG, Dingrui NI, Bolv XIAO, Zongyi MA, Xinglong PAN. Microstructure and Mechanical Properties of Additive Manufactured 2319 Alloy by Electron BeamFreeform Fabrication. Acta Metall Sin, 2018, 54(12): 1725-1734.

Download:  HTML  PDF(10373KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Aluminum alloys have the advantages of light weight and high strength, and they are important structural materials in aerospace field. The additive manufacturing technology of aluminum alloys has a potential application prospect in the field of on-orbit manufacturing in the future, and the technology of electron beam fuse deposition is the best process selection due to its unique technical advantages. In the present study, 2319 aluminum alloy wires with diameter of 2 mm were used for additive manufacturing (AM) by electron beam freeform fabrication (EBF3), with a sample of 150 mm×35 mm×52 mm being printed. The microstructure and mechanical properties of the printed sample in three directions were investigated. The results showed that bulk materials of the 2319 alloy can be printed without macroscopic defects under selective EBF3 parameters, with a relative density of 99.3% compared to the initial wires. The average grain size of the printed sample was less than 10 μm, containing primary Al2Cu phases, fine particles, and coarse impurity phases. There are some tiny voids in the printed sample, and the sizes of the voids are 5~15 μm. The ultimate tensile strengths of the printed sample were 161, 174 and 167 MPa in the length, width and height directions. After a T6 treatment, the coarse phase were basically dissolved and some finer phases were re-precipitated. Due to the dominant effect of dispersion strengthening, the mechanical properties of the sample were significantly improved, and the ultimate tensile strengths of the sample in three directions were increased to 423, 495, and 421 MPa, respectively.

Key words:  Al alloy      additive manufacturing (AM)      electron beam freeform fabrication (EBF3)      microstructure      mechanical property     
Received:  05 February 2018     
ZTFLH:  TG146.2  
Fund: Supported by Pre-Research Project on Manned Spaceflight (No.030302)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2018.00052     OR     https://www.ams.org.cn/EN/Y2018/V54/I12/1725

Fig.1  Macromorphology of 2319Al samples printed by electron beam freeform fabrication with dimension 150 mm×35 mm×52 mm (X: length; Y: width; Z: height)
Fig.2  OM images of as-printed (a, b) and T6 treated (c, d) 2319Al samples at X (a, c) and Z (b, d) directions
Fig.3  XRD spectra of as-printed and T6 treated 2319Al samples
Fig.4  TEM images of as-printed 2319Al samples
(a) subgrain boundaries formed by dislocations (b) straight grain boundaries(c) morphology of dispersed phases (d) coarse impurity phases (Inset shows the EDS)
Fig.5  TEM images of T6 treated 2319Al samples
(a) triple grain boundary junction and grain morphology (b) distribution of precipitated θ’’ (Al2Cu)(c) coarse impurity phases in grains (Inset shows the EDS) (d) coarse impurity phases on grain boundaries
Fig.6  Distributions of pores in as-printed
(a, b) and T6 treated (c, d) 2319Al samples at X (a, c) and Z (b, d) directions (Inset in Fig.6a shows typical morphology of pores)
Sample Density / (gcm-3) Relative density / %
Wire 2.814 100.0
As-printed 2.794 99.3
T6 treated 2.776 98.6
Table 1  Densities and relative densities of raw 2319 wire, as-printed and T6 treated bulk samples
Sample Direction Ultimate tensile strength / MPa Elongation / %
As-printed X 161±7 1.0±0.17
Y 174±8 2.5±0.26
Z 167±8 1.0±0.09
T6 heat-treated X 423±21 2.7±0.55
Y 495±10 4.9±0.11
Z 421±20 2.7±0.18
Table 2  Tensile properties of as-printed and T6 treated 2319Al samples at different directions
Fig.7  Low (a, c, e, g) and high (b, d, f, h) magnified SEM fracture surfaces images of as-printed and T6 treated 2319Al samples at different directions
(a, b) as-print, Y direction (c, d) T6 treated, Y direction (e, f) as-print, Z direction (g, h) T6 treated, Z direction
[1] Gao W, Zhang Y B, Ramanujan D, et al.The status, challenges, and future of additive manufacturing in engineering[J]. Comput.-Aided Des., 2015, 69: 65
[2] Zeltmann S E, Gupta N, Tsoutsos N G, et al.Manufacturing and security challenges in 3D printing[J]. JOM, 2016, 68: 1872
[3] Bourell D, Kruth J P, Leu M, et al.Materials for additive manufacturing[J]. CIRP Ann., 2017, 66: 659
[4] Herzog D, Seyda V, Wycisk E, et al.Additive manufacturing of metals[J]. Acta Mater., 2016, 117: 371
[5] Zhang X J, Tang S Y, Zhao H Y, et al.Research status and key technologies of 3D printing[J]. J. Mater. Eng., 2016, 44(2): 122(张学军, 唐思熠, 肇恒跃等. 3D打印技术研究现状和关键技术[J]. 材料工程, 2016, 44(2): 122)
[6] Yang P H, Gao X X, Liang J, et al.Development tread and NDT progress of metal additive manufacture technique[J]. J. Mater. Eng., 2017, 45(9): 13(杨平华, 高祥熙, 梁菁等. 金属增材制造技术发展动向及无损检测研究进展[J]. 材料工程, 2017, 45(9): 13)
[7] Liang J J, Yang Y H, Jin T, et al.Research status of 3D printing technology for metals in space[J]. Manned Spaceflight, 2017, 23: 663(梁静静, 杨彦红, 金涛等. 金属材料空间3D打印技术研究现状[J]. 载人航天, 2017, 23: 663)
[8] Huang D, Zhu Z H, Geng H B, et al.TIG wire and arc additive manufacturing of 5A06 aluminum alloy[J]. J. Mater. Eng., 2017, 45(3): 66(黄丹, 朱志华, 耿海滨等. 5A06铝合金TIG丝材-电弧增材制造工艺[J]. 材料工程, 2017, 45(3): 66)
[9] Basak A, Das S.Epitaxy and microstructure evolution in metal additive manufacturing[J]. Annu. Rev. Mater. Res., 2016, 46: 125
[10] Zhai Y W, Galarraga H, Lados D A.Microstructure evolution, tensile properties, and fatigue damage mechanisms in Ti-6Al-4V alloys fabricated by two additive manufacturing techniques[J]. Procedia Eng., 2015, 114: 658
[11] Babu S S, Goodridge R.Additive manufacturing[J]. Mater. Sci. Technol., 2015, 31: 881
[12] Sames W J, List F A, Pannala S, et al.The metallurgy and processing science of metal additive manufacturing[J]. Int. Mater. Rev., 2016, 61: 315
[13] Chen Z Y, Suo H B, Li J W.The forming character of electron beam freeform fabrication[J]. Aerospace Manuf. Technol., 2010, (1): 36(陈哲源, 锁红波, 李晋炜. 电子束熔丝沉积快速制造成型技术与组织特征[J]. 航天制造技术, 2010, (1): 36)
[14] Brice C A, Henn D S.Rapid prototyping and freeform fabrication via electron beam welding deposition [A]. Proceedings of International Institute of Welding Conference[C]. Copenhagen, Denmark, 2002
[15] Huang Z T, Gong S L, Suo H B, et al.Microstructure and properties of TC4 titanium alloy manufactured by electron beam rapid manufacturing[J]. Titanium Ind. Prog., 2016, 33(5): 33(黄志涛, 巩水利, 锁红波等. 电子束熔丝成形的TC4钛合金的组织与性能研究[J]. 钛工业进展, 2016, 33(5): 33)
[16] Yang Y, Suo H B, Chen Z Y, et al.Effect of solution temperature on microstructure and mechanical properties of TC17 alloy fabricated by electron beam wire deposition[J]. Heat Treat. Met., 2016, 41(9): 141(杨洋, 锁红波, 陈哲源等. 固溶温度对电子束熔丝成形TC17合金组织与性能的影响[J]. 金属热处理, 2016, 41(9): 141)
[17] Brandl E, Michailov V, Viehweger B, et al.Deposition of Ti-6Al-4V using laser and wire, part I: Microstructural properties of single beads[J]. Surf. Coat. Technol., 2011, 206: 1120
[18] Bush R W, Brice C A.Elevated temperature characterization of electron beam freeform fabricated Ti-6Al-4V and dispersion strengthened Ti-8Al-1Er[J]. Mater. Sci. Eng., 2012, A554: 12
[19] Read N, Wang W, Essa K, et al.Selective laser melting of AlSi10Mg alloy: Process optimisation and mechanical properties development[J]. Mater. Des., 2015, 65: 417
[20] Brandl E, Heckenberger U, Holzinger V, et al.Additive manufactured AlSi10Mg samples using Selective Laser Melting (SLM): Microstructure, high cycle fatigue, and fracture behavior[J]. Mater. Des., 2012, 34: 159
[21] Krishnan M, Atzeni E, Canali R, et al.On the effect of process parameters on properties of AlSi10Mg parts produced by DMLS[J]. Rapid Prototyping J., 2014, 20: 449.
[22] Yang Z Y, Zhao J Y.Additive Manufacturing and 3D Print Technology & Application [M]. Beijing: Tsinghua University Press, 2017: 1(杨占尧, 赵敬云. 增材制造与3D打印技术及应用 [M]. 北京: 清华大学出版社, 2017: 1)
[23] Taminger K M B, Hafley R A. Characterization of 2219 aluminum produced by electron beam freeform fabrication [A]. Proceedings of the 13th Solid Freeform Fabrication Symposium[C]. Austin, TX: NASA, 2002: 482
[24] Taminger K M B, Hafley R A. Electron beam freeform fabrication: A rapid metal deposition process [A]. Proceedings of the 3rd Annual Automotive Composites Conference[C]. Troy, Michigan: NASA, 2003: 1
[25] Domack M S, Taminger K M B, Begley M. Metallurgical mechanisms controlling mechanical properties of aluminium alloy 2219 produced by electron beam freeform fabrication[J]. Mater. Sci. Forum, 2006, 519-521: 1291
[26] Taminger K M, Hafley R A.Electron beam freeform fabrication for cost effective near-net shape manufacturing [A]. NATO/RTO AVT-139 Specialists' Meeting on Cost Effective Manufacture via Net Shape Processing[C]. Amsterdam: NASA, 2006: 1
[27] Taminger K M, Hafley R A, Domack M S. Evolution and control of2219 aluminium microstructural features through electron beam freeform fabrication[J]. Mater. Sci. Forum, 2006, 519-521: 1297
[28] Cai Y.Research on the microstructure and mechanical properties of 2219 aluminum alloy sheet during stretch forming [D]. Harbin: Harbin Institute of Technology, 2012(蔡洋. 2219铝合金板材拉形过程微观组织和力学性能研究 [D]. 哈尔滨: 哈尔滨工业大学, 2012)
[29] Brice C, Shenoy R, Kral M, et al.Precipitation behavior of aluminum alloy 2139 fabricated using additive manufacturing[J]. Mater. Sci. Eng., 2015, A648: 9
[30] Wan S X.The effects of hot extrusion and aging process on the microstructure and mechanical properties of 2219 aluminum alloy [D]. Harbin: Harbin University of Science and Technology, 2016(万升祥. 热挤压时效工艺对2219铝合金微观组织及力学性能的影响 [D]. 哈尔滨: 哈尔滨理工大学, 2016)
[31] Cui Z Q, Liu B X.Metallurgy and Heat Treatment Theory [M]. 3rd Ed., Harbin: Harbin Institute of Technology Press, 2007: 1(崔忠圻, 刘北兴. 金属学与热处理原理 [M]. 第3版, 哈尔滨: 哈尔滨工业大学出版社, 2007: 1)
[32] Sun R J, Zhu Y, Li L H, et al.Effect of laser shock peening on microstructure and residual stress of wire-arc additive manufactured 2319 aluminum alloy[J]. Laser Optoelectron. Prog., 2018, 55: 011412(孙汝剑, 朱颖, 李刘合等. 激光冲击强化对电弧增材2319铝合金微观组织及残余应力的影响[J]. 激光与光电子学进展, 2018, 55: 011412)
[33] Tomus D, Qian M, Brice C A, et al.Electron beam processing of Al-2Sc alloy for enhanced precipitation hardening[J]. Scr. Mater., 2010, 63: 151
[34] Brice C A, Dennis N.Cooling rate determination in additively manufactured aluminum alloy 2219[J]. Metall. Mater. Soc. Trans., 2015, 46A: 2304
[35] Cong B Q, Ding J L, Williams S.Effect of arc mode in cold metal transfer process on porosity of additively manufactured Al-6.3%Cu alloy[J]. Int. J. Adv. Manuf. Technol., 2015, 76: 1595
[36] Gu J L, Ding J L, Williams S W, et al.The strengthening effect of inter-layer cold working and post-deposition heat treatment on the additively manufactured Al-6.3Cu alloy[J]. Mater. Sci. Eng., 2016, A651: 18
[37] Gu J L, Ding J L, Williams S W, et al.The effect of inter-layer cold working and post-deposition heat treatment on porosity in additively manufactured aluminum alloys[J]. J. Mater. Process. Technol., 2016, 230: 26
[38] Sun J B, Wang S H, Sun G, et al.Microstructures and mechanical properties of 2219-T852 aluminum alloy forgings[J]. Heat Treat. Met., 2017, 42(2): 83(孙进宝, 王少华, 孙刚等. 2219-T852铝合金锻件的显微组织与力学性能[J]. 金属热处理, 2017, 42(2): 83)
[1] WANG Lei, LIU Mengya, LIU Yang, SONG Xiu, MENG Fanqiang. Research Progress on Surface Impact Strengthening Mechanisms and Application of Nickel-Based Superalloys[J]. 金属学报, 2023, 59(9): 1173-1189.
[2] ZHANG Jian, WANG Li, XIE Guang, WANG Dong, SHEN Jian, LU Yuzhang, HUANG Yaqi, LI Yawei. Recent Progress in Research and Development of Nickel-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1109-1124.
[3] ZHANG Leilei, CHEN Jingyang, TANG Xin, XIAO Chengbo, ZHANG Mingjun, YANG Qing. Evolution of Microstructures and Mechanical Properties of K439B Superalloy During Long-Term Aging at 800oC[J]. 金属学报, 2023, 59(9): 1253-1264.
[4] LU Nannan, GUO Yimo, YANG Shulin, LIANG Jingjing, ZHOU Yizhou, SUN Xiaofeng, LI Jinguo. Formation Mechanisms of Hot Cracks in Laser Additive Repairing Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1243-1252.
[5] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[6] ZHENG Liang, ZHANG Qiang, LI Zhou, ZHANG Guoqing. Effects of Oxygen Increasing/Decreasing Processes on Surface Characteristics of Superalloy Powders and Properties of Their Bulk Alloy Counterparts: Powders Storage and Degassing[J]. 金属学报, 2023, 59(9): 1265-1278.
[7] DING Hua, ZHANG Yu, CAI Minghui, TANG Zhengyou. Research Progress and Prospects of Austenite-Based Fe-Mn-Al-C Lightweight Steels[J]. 金属学报, 2023, 59(8): 1027-1041.
[8] LI Jingren, XIE Dongsheng, ZHANG Dongdong, XIE Hongbo, PAN Hucheng, REN Yuping, QIN Gaowu. Microstructure Evolution Mechanism of New Low-Alloyed High-Strength Mg-0.2Ce-0.2Ca Alloy During Extrusion[J]. 金属学报, 2023, 59(8): 1087-1096.
[9] CHEN Liqing, LI Xing, ZHAO Yang, WANG Shuai, FENG Yang. Overview of Research and Development of High-Manganese Damping Steel with Integrated Structure and Function[J]. 金属学报, 2023, 59(8): 1015-1026.
[10] LIU Xingjun, WEI Zhenbang, LU Yong, HAN Jiajia, SHI Rongpei, WANG Cuiping. Progress on the Diffusion Kinetics of Novel Co-based and Nb-Si-based Superalloys[J]. 金属学报, 2023, 59(8): 969-985.
[11] SUN Rongrong, YAO Meiyi, WANG Haoyu, ZHANG Wenhuai, HU Lijuan, QIU Yunlong, LIN Xiaodong, XIE Yaoping, YANG Jian, DONG Jianxin, CHENG Guoguang. High-Temperature Steam Oxidation Behavior of Fe22Cr5Al3Mo-xY Alloy Under Simulated LOCA Condition[J]. 金属学报, 2023, 59(7): 915-925.
[12] YUAN Jianghuai, WANG Zhenyu, MA Guanshui, ZHOU Guangxue, CHENG Xiaoying, WANG Aiying. Effect of Phase-Structure Evolution on Mechanical Properties of Cr2AlC Coating[J]. 金属学报, 2023, 59(7): 961-968.
[13] WANG Fa, JIANG He, DONG Jianxin. Evolution Behavior of Complex Precipitation Phases in Highly Alloyed GH4151 Superalloy[J]. 金属学报, 2023, 59(6): 787-796.
[14] FENG Aihan, CHEN Qiang, WANG Jian, WANG Hao, QU Shoujiang, CHEN Daolun. Thermal Stability of Microstructures in Low-Density Ti2AlNb-Based Alloy Hot Rolled Plate[J]. 金属学报, 2023, 59(6): 777-786.
[15] ZHANG Deyin, HAO Xu, JIA Baorui, WU Haoyang, QIN Mingli, QU Xuanhui. Effects of Y2O3 Content on Properties of Fe-Y2O3 Nanocomposite Powders Synthesized by a Combustion-Based Route[J]. 金属学报, 2023, 59(6): 757-766.
No Suggested Reading articles found!