Please wait a minute...
Acta Metall Sin  2018, Vol. 54 Issue (1): 31-38    DOI: 10.11900/0412.1961.2017.00202
Orginal Article Current Issue | Archive | Adv Search |
Effect of Cooling Rate on Microstructure Evolution and Mechanical Properties of Ti-V-Mo Complex Microalloyed Steel
Ke ZHANG1,2(), Zhaodong LI3, Fengli SUI1,2, Zhenghai ZHU1,2, Xiaofeng ZHANG1,2, Xinjun SUN3, Zhenyi HUANG1,2, Qilong YONG3
1 Key Laboratory of Metallurgical Emission Reduction & Resources Recycling (Anhui University of Technology), Ministry of Education, Maanshan 243032, China;
2 School of Metallurgical Engineering, Anhui University of Technology, Maanshan 243032, China
3 Institute of Structural Steels, Central Iron and Steel Research Institute, Beijing 100081, China
Cite this article: 

Ke ZHANG, Zhaodong LI, Fengli SUI, Zhenghai ZHU, Xiaofeng ZHANG, Xinjun SUN, Zhenyi HUANG, Qilong YONG. Effect of Cooling Rate on Microstructure Evolution and Mechanical Properties of Ti-V-Mo Complex Microalloyed Steel. Acta Metall Sin, 2018, 54(1): 31-38.

Download:  HTML  PDF(943KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Nanoscale co-precipitation strengthening in steels has attracted increasing attention in recent years and has become a new cornerstone for the development of advanced high performance steels with superior combination of strength and ductility. Rolling process, finishing temperature, cooling rate and coiling temperature are the main factors which affect the mechanical properties of microalloyed steels by changing the volume fraction and particle size of precipitates. Nevertheless, the influence of cooling rate on microstructure evolution, precipitates and mechanical properties of complex microalloyed ferritic Ti-V-Mo steel has been rarely reported. In this work, the precipitation law of (Ti, V, Mo)C carbides at different cooling rates and its effect on microstructue evolution and mechanical properties of Ti-V-Mo complex miroalloyed steel were studied by OM, EBSD, HRTEM and Vickers-hardness test. The results indicated that the hardness first increased quickly and then increased slowly as the cooling rate increased (lower than 20 ℃/s); the mean size of (Ti, V, Mo)C particles decreased from 13.2 nm to 6.9 nm and the average size of ferrite grain reduced from 5.06 μm to 2.97 μm; the hardness of Ti-V-Mo steel was improved by the means of grain refinement hardening and precipitation hardening. However, when the cooling rate increased from 20 ℃/s to 30 ℃/s, its effects on grain refinement hardening and precipitation hardening has become saturated, so the hardness was kept flat and achieved a maximum vlaue of 410 HV, and the yield strength reached as high as 1090 MPa. The hardness y of Ti-V-Mo microalloyed steel and cooling rates x accord with a exponential decay relationship: y=-229exp(-x/5)+412.

Key words:  cooling rate      Ti-V-Mo      hardness      precipitate      ferrite     
Received:  24 May 2017     
ZTFLH:  TG142.1  
Fund: Supported by National Natural Science Foundation of China (Nos.51704008 and 51674004), National Key Research and Development Program of China (Nos.2017YFB0305100 and 2017YFB0304700), National Basic Research Program of China (No.2015CB654803), Science and Technology Foundation of China Iron & Steel Research Institute Group (No.15G60530A) and the Youth Scientific Research Foundation of Anhui University of Technology (No.QZ201603)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2017.00202     OR     https://www.ams.org.cn/EN/Y2018/V54/I1/31

Fig.1  Schematic of thermo-mechanical controlled processing (TMCP) of Ti-V-Mo steel
Fig.2  OM images of Ti-V-Mo steel at the cooling rates of 1 ℃/s (a), 5 ℃/s (b), 10 ℃/s (c), 15 ℃/s (d), 20 ℃/s (e) and 30 ℃/s (f)
Fig.3  EBSD images of Ti-V-Mo steels at the cooling rate of 1 ℃/s (a), 5 ℃/s (b), 15 ℃/s (c) and 25 ℃/s (d) (Black and blue lines indicate the high misorientation angle boundaries (θ≥15°) and low misorientation angle boundaries (2°≤θ<15°), respectively)
Fig.4  Misorientation angle boundaries distribution of Ti-V-Mo steels at different cooling rates
Fig.5  Precipitates of Ti-V-Mo steels at the cooling rates of 1 ℃/s (a), 5 ℃/s (b), 15 ℃/s (c) and 25 ℃/s (d), and morphology (e) and corresponding EDS (f) of the particle in Fig.5d
Fig.6  Size distribution of precipitates of Ti-V-Mo steels at different cooling rates
Fig.7  Hardness of of Ti-V-Mo steel at different cooling rates
Fig.8  Variation of yield strength as a function of cooling rates of Ti-V-Mo steel
Cooling rate
℃s-1
Hardness
HV
Mean size of
precipitate / nm
Average grain
size / μm
1 225 13.2 5.06
5 330 11.3 4.54
15 394 6.9 2.97
25 410 6.4 2.63
Table 1  Microstructure parameters of Ti-V-Mo steel at different cooling rates
[1] Jiao Z B, Liu J C.Research and development of advanced nano-precipitate strengthened ultra-high strength steels[J]. Mater. China, 2011, 30(12): 6(焦增宝, 刘锦川. 新型纳米强化超高强度钢的研究与进展[J]. 中国材料进展, 2011, 30(12): 6)
[2] Jiao Z B, Luan J H, Miller M K, et al.Co-precipitation of nanoscale particles in steels with ultra-high strength for a new era[J]. Mater. Today, 2017, 20: 142
[3] Lv Z P, Jiang S H, He J Y, et al.Second phase strengthening in advanced metal materials[J]. Acta Metall. Sin., 2016, 52: 1183(吕昭平, 蒋虽合, 何骏阳等. 先进金属材料的第二相强化[J]. 金属学报, 2016, 52: 1183)
[4] Kim Y W, Kim J H, Hong S G, et al.Effects of rolling temperature on the microstructure and mechanical properties of Ti-Mo microalloyed hot-rolled high strength steel[J]. Mater. Sci. Eng., 2014, A605: 244
[5] Chen J, Lv M Y, Tang S, et al.Microstructure, mechanical properties and interphase precipitation behaviors in V-Ti microalloyed steel[J]. Acta Metall. Sin., 2014, 50: 524(陈俊, 吕梦阳, 唐帅等. V-Ti微合金钢的组织性能及相间析出行为[J]. 金属学报, 2014, 50: 524)
[6] Mukherjee S, Timokhina I, Zhu C, et al.Clustering and precipitation processes in a ferritic titanium-molybdenum microalloyed steel[J]. J. Alloys Compd., 2017, 690: 621
[7] Phaniraj M.P, Shin Y M, Lee J, et al.. Development of high strength hot rolled low carbon copper-bearing steel containing nanometer sized carbides[J]. Mater. Sci. Eng., 2015, A633: 1
[8] Li X L, Wang Z D.Interphase precipitation behaviors of nanometer-sized carbides in a Nb-Ti-bearing low-carbon microalloyed steel[J]. Acta Metall. Sin., 2015, 51: 417(李小琳, 王昭东. 含Nb-Ti低碳微合金钢中纳米碳化物的相间析出行为[J]. 金属学报, 2015, 51: 417)
[9] Chen C Y, Chen C C, Yang J R.Microstructure characterization of nanometer carbides heterogeneous precipitation in Ti-Nb and Ti-Nb-Mo steel[J]. Mater. Charact., 2014, 88: 69
[10] Yi H L, Du L X, Wang G D, et al.Development of Nb-V-Ti hot-rolled high strength steel with fine ferrite and precipitation strengthening[J]. J. Iron Steel Res. Int., 2009, 16(4): 72
[11] Li X L, Wang Z D, Deng X T, et al.Effect of final temperature after ultra-fast cooling on microstructural evolution and precipitation behavior of Nb-V-Ti bearing low alloy steel[J]. Acta Metall. Sin., 2015, 51: 784(李小琳, 王昭东, 邓想涛等. 超快冷终冷温度对含Nb-V-Ti微合金钢组织转变及析出行为的影响[J]. 金属学报, 2015, 51: 784)
[12] Zhang K, Yong Q L, Sun X J, et al.Effect of coiling temperature on microstructure and mechanical properties of Ti-V-Mo complex microalloyed ultra-high strength steel[J]. Acta Metall. Sin., 2016, 52: 529(张可, 雍岐龙, 孙新军等. 卷取温度对Ti-V-Mo复合微合金化超高强度钢组织及力学性能的影响[J]. 金属学报, 2016, 52: 529)
[13] Olasolo M, Uranga P, Rodriguez-Ibabe J M, et al.. Effect of austenite microstructure and cooling rate on transformation characteristics in a low carbon Nb-V microalloyed steel[J]. Mater. Sci. Eng., 2011, A528: 2559
[14] Wang Q, Sun T T, Bai Y Q.Effect of cooling rate on microstructure and mechanical properties of ultra-low carbon micro-alloyed steel[J]. Heat Treat. Met., 2015, 40(2): 148(王权, 孙婷婷, 白雅琼. 冷却速度对超低碳微合金钢组织和性能的影响[J]. 金属热处理, 2015, 40(2): 148)
[15] Ma F J, Wen G H, Tang P, et al.Effect of cooling rate on the precipitation behavior of carbonitride in microalloyed steel slab[J]. Metall. Mater. Trans., 2011, 42B: 81
[16] Xu Y, Sun M X, Zhou Y L, et al.Precipitation behavior of (Nb, Ti)C in coiling process and its effect on micro-mechanical characteristics of ferrite[J]. Acta Metall. Sin., 2015, 51: 31(徐洋, 孙明雪, 周砚磊等. (Nb, Ti)C在轧后卷取中的析出及对铁素体相微观力学特征的影响[J]. 金属学报, 2015, 51: 31)
[17] Sha Q Y, Li G Y, Yan P Y, et al.Effect of cooling rate and coiling temperature on the precipitates in ferrite of Nb-V-Ti microalloyed complex strip steel[J]. Mater. China, 2011, 30(12): 23(沙庆云, 李桂艳, 严平沅等. 冷却速度和卷取温度对Nb-V-Ti复合微合金带钢铁素体中析出的影响[J]. 中国材料进展, 2011, 30(12): 23)
[18] Zajac S, Siwecki T, Hutchinson B, et al.Recrystallization controlled rolling and accelerated cooling for high strength and toughness in V-Ti-N steels[J]. Metall. Mater. Trans., 1991, 22A: 2681
[19] Manohar P A, Chandra T.Continuous cooling transformation behaviour of high strength microalloyed steels for linepipe applications[J]. ISIJ Int., 1998, 38: 766
[20] Zhang K, Li Z D, Wang Z Q, et al.Precipitation behavior and mechanical properties of hot-rolled high strength Ti-Mo-bearing ferritic sheet steel: The great potential of nanometer-sized (Ti, Mo)C carbide[J]. J. Mater. Res., 2016, 31: 1254
[21] Yong Q L, Ma M T, Wu B R.Microalloyed Steel─Physical and Mechanical Metallurgy [M]. Beijing: China Machine Press, 1989: 65(雍岐龙, 马鸣图, 吴宝榕. 微合金钢─物理和力学冶金 [M]. 北京: 机械工业出版社, 1989: 65)
[22] Gladman T, McIvor I D, Pickering F B. Some aspects of the structure-property relationships in high-carbon ferrite-pearlite steels[J]. J. Iron Steel Inst., 1972, 210: 916
[23] Kim Y W, Song S W, Seo S J, et al.Development of Ti and Mo micro-alloyed hot-rolled high strength sheet steel by controlling thermomechanical controlled processing schedule[J]. Mater. Sci. Eng., 2013, A565: 430
[24] Zhang K, Li Z D, Sun X J, et al.Development of Ti-V-Mo complex microalloyed hot-rolled 900-MPa-Grade high-strength steel[J]. Acta Metall. Sin.(Engl. Lett.), 2015, 28: 641
[25] Pavlina E J, Van Tyne C J. Correlation of yield strength and tensile strength with hardness for steels[J]. J. Mater. Eng. Perform., 2008, 17: 888
[26] Xu Y.Study on ferrite transformation and nano-precipitation behaviors and mechanism of Ti micro-alloyed steel [D]. Shenyang: Northeastern University, 2015(徐洋. 钛微合金化钢中铁素体相变及纳米相析出行为与机理研究 [D]. 沈阳: 东北大学, 2015)
[1] LU Yuhua, WANG Haizhou, LI Dongling, FU Rui, LI Fulin, SHI Hui. A Quantitative and Statistical Method of γ' Precipitates in Superalloy Based on the High-Throughput Field Emission Scanning Eelectron Microscope[J]. 金属学报, 2023, 59(7): 841-854.
[2] WANG Fa, JIANG He, DONG Jianxin. Evolution Behavior of Complex Precipitation Phases in Highly Alloyed GH4151 Superalloy[J]. 金属学报, 2023, 59(6): 787-796.
[3] ZHAO Yafeng, LIU Sujie, CHEN Yun, MA Hui, MA Guangcai, GUO Yi. Critical Inclusion Size and Void Growth in Dual-Phase Ferrite-Bainite Steel During Ductile Fracture[J]. 金属学报, 2023, 59(5): 611-622.
[4] CHENG Yuanyao, ZHAO Gang, XU Deming, MAO Xinping, LI Guangqiang. Effect of Austenitizing Temperature on Microstructures and Mechanical Properties of Si-Mn Hot-Rolled Plate After Quenching and Partitioning Treatment[J]. 金属学报, 2023, 59(3): 413-423.
[5] ZHANG Yuexin, WANG Jujin, YANG Wen, ZHANG Lifeng. Effect of Cooling Rate on the Evolution of Nonmetallic Inclusions in a Pipeline Steel[J]. 金属学报, 2023, 59(12): 1603-1612.
[6] RUI Xiang, LI Yanfen, ZHANG Jiarong, WANG Qitao, YAN Wei, SHAN Yiyin. Microstructure and Mechanical Properties of a Novel Designed 9Cr-ODS Steel Synergically Strengthened by Nano Precipitates[J]. 金属学报, 2023, 59(12): 1590-1602.
[7] MA Guonan, ZHU Shize, WANG Dong, XIAO Bolv, MA Zongyi. Aging Behaviors and Mechanical Properties of SiC/Al-Zn-Mg-Cu Composites[J]. 金属学报, 2023, 59(12): 1655-1664.
[8] CHEN Kaixuan, LI Zongxuan, WANG Zidong, Demange Gilles, CHEN Xiaohua, ZHANG Jiawei, WU Xuehua, Zapolsky Helena. Morphological Evolution of Fe-Rich Precipitates in a Cu-2.0Fe Alloy During Isothermal Treatment[J]. 金属学报, 2023, 59(12): 1665-1674.
[9] WANG Haifeng, ZHANG Zhiming, NIU Yunsong, YANG Yange, DONG Zhihong, ZHU Shenglong, YU Liangmin, WANG Fuhui. Effect of Pre-Oxidation on Microstructure and Wear Resistance of Titanium Alloy by Low Temperature Plasma Oxynitriding[J]. 金属学报, 2023, 59(10): 1355-1364.
[10] HOU Xuru, ZHAO Lin, REN Shubin, PENG Yun, MA Chengyong, TIAN Zhiling. Effect of Heat Input on Microstructure and Mechanical Properties of Marine High Strength Steel Fabricated by Wire Arc Additive Manufacturing[J]. 金属学报, 2023, 59(10): 1311-1323.
[11] LI Xiaolin, LIU Linxi, LI Yating, YANG Jiawei, DENG Xiangtao, WANG Haifeng. Mechanical Properties and Creep Behavior of MX-Type Precipitates Strengthened Heat Resistant Martensite Steel[J]. 金属学报, 2022, 58(9): 1199-1207.
[12] LIANG Chen, WANG Xiaojuan, WANG Haipeng. Formation Mechanism of B2 Phase and Micro-Mechanical Property of Rapidly Solidified Ti-Al-Nb Alloy[J]. 金属学报, 2022, 58(9): 1169-1178.
[13] LI Shanshan, CHEN Yun, GONG Tongzhao, CHEN Xingqiu, FU Paixian, LI Dianzhong. Effect of Cooling Rate on the Precipitation Mechanism of Primary Carbide During Solidification in High Carbon-Chromium Bearing Steel[J]. 金属学报, 2022, 58(8): 1024-1034.
[14] LIU Xuxi, LIU Wenbo, LI Boyan, HE Xinfu, YANG Zhaoxi, YUN Di. Calculation of Critical Nucleus Size and Minimum Energy Path of Cu-Riched Precipitates During Radiation in Fe-Cu Alloy Using String Method[J]. 金属学报, 2022, 58(7): 943-955.
[15] SUN Yi, ZHENG Qinyuan, HU Baojia, WANG Ping, ZHENG Chengwu, LI Dianzhong. Mechanism of Dynamic Strain-Induced Ferrite Transformation in a 3Mn-0.2C Medium Mn Steel[J]. 金属学报, 2022, 58(5): 649-659.
No Suggested Reading articles found!