Please wait a minute...
Acta Metall Sin  2018, Vol. 54 Issue (4): 557-565    DOI: 10.11900/0412.1961.2017.00147
Orginal Article Current Issue | Archive | Adv Search |
Anisotropy and Deformation Mechanisms ofAs-Extruded Mg-3Zn-1Y Magnesium AlloyUnder High Strain Rates
Xudong LI, Pingli MAO(), Yanyu LIU, Zheng LIU, Zhi WANG, Feng WANG
School of Materials Science and Engineering, Shenyang University of Technology, Shenyang 110870, China
Cite this article: 

Xudong LI, Pingli MAO, Yanyu LIU, Zheng LIU, Zhi WANG, Feng WANG. Anisotropy and Deformation Mechanisms ofAs-Extruded Mg-3Zn-1Y Magnesium AlloyUnder High Strain Rates. Acta Metall Sin, 2018, 54(4): 557-565.

Download:  HTML  PDF(5031KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

As a very important design principle, the dynamic properties of materials attracted extensive attention in resent years and a bunch of works have been done concerning with the materials deformation behaviors under high strain rates. However, the dynamic behaviors of magnesium alloys are not through understood, especially the rare earth based magnesium alloys. In order to investigate the dynamic and anisotropic behavior under high strain rates deformation of as-extruded Mg-3Zn-1Y magnesium alloy, the split Hopkinson pressure bar (SHPB) apparatus was used to testing the true stress-true strain curves under the high strain rates of 1000, 1500 and 2200 s-1 of as-extruded Mg-3Zn-1Y magnesium alloy. The OM and SEM were used to analysis the micorstructure evolution and fracture surface morphology of the alloy. The true reason behind the anisotropic phenomenon was revealed based on the deformation mechanism of highly basal-textured magnesium alloy. The results demonstrate that the as-extruded Mg-3Zn-1Y magnesium alloy exhibits pronounced anisotropy during compression according to the loading direction. The anisotropy of the as-extruded Mg-3Zn-1Y magnesium alloy are arised from the variety of the deformation mechanisms. When the loading direction is along extrusion direction, the predominant deformation mode changes from extension twinning at a lower strain to prismatic slip at a higher strain. While compressed along extrusion radial direction (ERD), the predominant deformation mode changes from contraction twinning to a coordination of basal and second order pyramidal slip with the increasing of strain.

Key words:  magnesium alloy      anisotropy      high strain rate      deformation mechanism     
Received:  25 April 2017     
ZTFLH:  TG146.2  
Fund: Supported by Science and Technology Project of Shenyang (No.17-9-6-00)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2017.00147     OR     https://www.ams.org.cn/EN/Y2018/V54/I4/557

Fig.1  Schematic of sample cutting arrangement (ED—extrusion direction, ERD—extrusion radial direction)
Fig.2  OM images of microstructures in as-extruded Mg-3Zn-1Y magnesium alloy for samples ED (a) and ERD (b)
Fig.3  Compression true stress-true strain curves of as-extruded Mg-3Zn-1Y magnesium alloy at high strain rates under loading directions of ED (a) and ERD (b)
Fig.4  Relationships between yield strength and strain rate of as-extruded Mg-3Zn-1Y magnesium alloy under loading directions of ED and ERD
Fig.5  True stress-true strain curves of as-extruded Mg-3Zn-1Y magnesium alloy under different loading directions at low and high strain rates
Fig.6  Hardening rate-true strain curves of as-extruded Mg-3Zn-1Y magnesium alloy under loading directions of ED and ERD (σ—true stress, ε—true strain)
Fig.7  Relationships between impact absorbing work (E) and strain rates of as-extruded Mg-3Zn-1Y magnesium alloy under loading directions of ED and ERD
Fig.8  OM images of deformation microstructures in as-extruded Mg-3Zn-1Y alloy along ED loading direction at strain rates of 1000 s-1 (a), 1500 s-1 (b) and 2200 s-1 (c)
Fig.9  OM images of deformation microstructures in Mg-3Zn-1Y alloy along ERD loading direction at strain rates of 1000 s-1 (a), 1500 s-1 (b) and 2200 s-1 (c)
Fig.10  XRD spectra of as-extruded Mg-3Zn-1Y alloy for samples ED (a) and ERD (b)
Fig.11  Schematics of the relative relationship between the loading direction of as-extruded Mg-3Zn-1Y magnesium alloy and the c-axis of grain before (a, c) and after (b, d) compression along ED (a, b) and ERD (c, d) loading direction
Fig.12  Morphologies of compression fracture surfaces for as-extruded Mg-3Zn-1Y magnesium alloy along loading directions of ED (a) and ERD (b) at 2200 s-1
[1] Mordike B L, Ebert T.Magnesium: Properties-applications-potential[J]. Mater. Sci. Eng., 2001, A302: 37
[2] Aghion E, Bronfin B. Magnesium alloys development towards the 21st century [J]. Mater. Sci. Forum, 2000, 350-351: 19
[3] Van Fleteren R.Magnesium for automotive applications[J]. Adv. Mater. Process., 1996, 149(5): 33
[4] Kleiner S, Uggowitzer P J.Mechanical anisotropy of extruded Mg-6% Al-1% Zn alloy[J]. Mater. Sci. Eng., 2004, A379: 258
[5] Bohlen J, Nürnberg M R, Senn J W, et al.The texture and anisotropy of magnesium-zinc-rare earth alloy sheets[J]. Acta Mater., 2007, 55: 2101
[6] Yin S M, Wang C H, Diao Y D, et al.Influence of grain size and texture on the yield asymmetry of Mg-3Al-1Zn alloy[J]. J. Mater. Sci. Technol., 2011, 27: 29
[7] Ball E A, Prangnell P B.Tensile-compressive yield asymmetries in high strength wrought magnesium alloys[J]. Scr. Metall. Mater., 1994, 31: 111
[8] Yin D L, Wang J T, Liu J Q, et al.On tension-compression yield asymmetry in an extruded Mg-3Al-1Zn alloy[J]. J. Alloys Compd., 2009, 478: 789
[9] Mao P L, Liu Z, Wang C Y, et al.Deformation microstructure of AZ31B magnesium alloy under high strain rate compression[J]. Chin. J. Nonferrous Met., 2009, 19: 816(毛萍莉, 刘正, 王长义 等. 高应变速率下AZ31B镁合金的压缩变形组织 [J]. 中国有色金属学报, 2009, 19: 816)
[10] Watanabe H, Ishikawa K.Effect of texture on high temperature deformation behavior at high strain rates in a Mg-3Al-1Zn alloy[J]. Mater. Sci. Eng., 2009, A523: 304
[11] Agnew S R, Duygulu ?.Plastic anisotropy and the role of non-basal slip in magnesium alloy AZ31B[J]. Int. J. Plast., 2005, 21: 1161
[12] Nave M D, Barnett M R.Microstructures and textures of pure magnesium deformed in plane-strain compression[J]. Scr. Mater., 2004, 51: 881
[13] Yang Y B, Wang F C, Tan C W, et al.Plastic deformation mechanisms of AZ31 magnesium alloy under high strain rate compression[J]. Trans. Nonferrous Met. Soc. China, 2008, 18: 1043
[14] Barnett M R, Keshavarz Z, Beer A G, et al.Influence of grain size on the compressive deformation of wrought Mg-3Al-1Zn[J]. Acta Mater., 2004, 52: 5093
[15] Barnett M R.Twinning and the ductility of magnesium alloys: Part II. "Contraction" twins[J]. Mater. Sci. Eng., 2007, A464: 8
[16] Wan G, Wu B L, Zhang Y D, et al.Anisotropy of dynamic behavior of extruded AZ31 magnesium alloy[J]. Mater. Sci. Eng., 2010, A527: 2915
[17] Liu Z, Zhang K, Zeng X Q.Theory and Application of Mg-Based Light Alloy [M]. Beijing: China Machine Press, 2002: 32(刘正, 张奎, 曾小勤. 镁基轻质合金理论基础及其应用 [M]. 北京: 机械工业出版社, 2002: 32)
[18] Barnett M R.Twinning and the ductility of magnesium alloys: Part I: "Tension" twins[J]. Mater. Sci. Eng., 2007, A464: 1
[19] Jiang L, Jonas J J, Mishra R K, et al.Twinning and texture development in two Mg alloys subjected to loading along three different strain paths[J]. Acta Mater., 2007, 55: 3899
[20] Jiang L, Jonas J J, Luo A A, et al. Influence of {10$\bar{1}$2} extension twinning on the flow behavior of AZ31 Mg alloy [J]. Mater. Sci. Eng., 2007, A445-446: 302
[21] Brown D W, Agnew S R, Bourke M A M, et al. Internal strain and texture evolution during deformation twinning in magnesium[J]. Mater. Sci. Eng., 2005, A399: 1
[22] Gehrmann R, Frommert M M, Gottstein G.Texture effects on plastic deformation of magnesium[J]. Mater. Sci. Eng., 2005, A395: 338
[23] Wang M Y, Xin R L, Wang B S, et al.Effect of initial texture on dynamic recrystallization of AZ31 Mg alloy during hot rolling[J]. Mater. Sci. Eng., 2010, A528: 2941
[24] Christian J W, Mahajan S.Deformation twinning[J]. Prog. Mater. Sci., 1995, 39: 1
[25] Luo J R, Liu Q, Liu W.Influence of rolling temperature on the {1010$\bar{1}$1}-{10$\bar{1}$21}-{10$\bar{1}$1}-{10$\bar{1}$2} twinning in rolled AZ31 magnesium alloy sheets[J]. Acta Metall. Sin., 2012, 48: 717(罗晋如, 刘庆, 刘伟. 轧制温度对AZ31镁合金轧制板材中的{1010$\bar{1}$1}-{10$\bar{1}$21}-{1010$\bar{1}$1}-{10$\bar{1}$22}双孪生行为的影响 [J]. 金属学报, 2012, 48: 717)
[26] Chen Z H, Xia W J, Cheng Y Q, et al.Texture and anisotropy in magnesium alloys[J]. Chin. J. Nonferrous Met., 2005, 15: 1(陈振华, 夏伟军, 程永奇 等. 镁合金织构与各向异性 [J]. 中国有色金属学报, 2005, 15: 1)
[27] Bingert J F, Mason T A, Kaschner G C, et al.Deformation twinning in polycrystalline Zr: Insights from electron backscattered diffraction characterization[J]. Metall. Mater. Trans., 2002, 33A: 955
[1] ZHANG Leilei, CHEN Jingyang, TANG Xin, XIAO Chengbo, ZHANG Mingjun, YANG Qing. Evolution of Microstructures and Mechanical Properties of K439B Superalloy During Long-Term Aging at 800oC[J]. 金属学报, 2023, 59(9): 1253-1264.
[2] ZHANG Haifeng, YAN Haile, FANG Feng, JIA Nan. Molecular Dynamic Simulations of Deformation Mechanisms for FeMnCoCrNi High-Entropy Alloy Bicrystal Micropillars[J]. 金属学报, 2023, 59(8): 1051-1064.
[3] DING Hua, ZHANG Yu, CAI Minghui, TANG Zhengyou. Research Progress and Prospects of Austenite-Based Fe-Mn-Al-C Lightweight Steels[J]. 金属学报, 2023, 59(8): 1027-1041.
[4] LIU Junpeng, CHEN Hao, ZHANG Chi, YANG Zhigang, ZHANG Yong, DAI Lanhong. Progress of Cryogenic Deformation and Strengthening-Toughening Mechanisms of High-Entropy Alloys[J]. 金属学报, 2023, 59(6): 727-743.
[5] SHAO Xiaohong, PENG Zhenzhen, JIN Qianqian, MA Xiuliang. Unravelling the {101¯2} Twin Intersection Between LPSO Structure/SFs in Magnesium Alloy[J]. 金属学报, 2023, 59(4): 556-566.
[6] ZHU Yunpeng, QIN Jiayu, WANG Jinhui, MA Hongbin, JIN Peipeng, LI Peijie. Microstructure and Properties of AZ61 Ultra-Fine Grained Magnesium Alloy Prepared by Mechanical Milling and Powder Metallurgy Processing[J]. 金属学报, 2023, 59(2): 257-266.
[7] TANG Weineng, MO Ning, HOU Juan. Research Progress of Additively Manufactured Magnesium Alloys: A Review[J]. 金属学报, 2023, 59(2): 205-225.
[8] WANG Kai, JIN Xi, JIAO Zhiming, QIAO Junwei. Mechanical Behaviors and Deformation Constitutive Equations of CrFeNi Medium-Entropy Alloys Under Tensile Conditions from 77 K to 1073 K[J]. 金属学报, 2023, 59(2): 277-288.
[9] ZHANG Zixuan, YU Jinjiang, LIU Jinlai. Anisotropy of Stress Rupture Property of Ni Base Single Crystal Superalloy DD432[J]. 金属学报, 2023, 59(12): 1559-1567.
[10] GE Jinguo, LU Zhao, HE Siliang, SUN Yan, YIN Shuo. Anisotropy in Microstructures and Mechanical Properties of 2Cr13 Alloy Produced by Wire Arc Additive Manufacturing[J]. 金属学报, 2023, 59(1): 157-168.
[11] GAO Yubi, DING Yutian, LI Haifeng, DONG Hongbiao, ZHANG Ruiyao, LI Jun, LUO Quanshun. Effect of Deformation Rate on the Elastic-Plastic Deformation Behavior of GH3625 Alloy[J]. 金属学报, 2022, 58(5): 695-708.
[12] CHEN Yang, MAO Pingli, LIU Zheng, WANG Zhi, CAO Gengsheng. Detwinning Behaviors and Dynamic Mechanical Properties of Precompressed AZ31 Magnesium Alloy Subjected to High Strain Rates Impact[J]. 金属学报, 2022, 58(5): 660-672.
[13] ZENG Xiaoqin, WANG Jie, YING Tao, DING Wenjiang. Recent Progress on Thermal Conductivity of Magnesium and Its Alloys[J]. 金属学报, 2022, 58(4): 400-411.
[14] LU Lei, ZHAO Huaizhi. Progress in Strengthening and Toughening Mechanisms of Heterogeneous Nanostructured Metals[J]. 金属学报, 2022, 58(11): 1360-1370.
[15] ZHANG Jinyu, QU Qimeng, WANG Yaqiang, WU Kai, LIU Gang, SUN Jun. Research Progress on Irradiation Effects and Mechanical Properties of Metal/High-Entropy Alloy Nanostructured Multilayers[J]. 金属学报, 2022, 58(11): 1371-1384.
No Suggested Reading articles found!