|
|
Anisotropy and Deformation Mechanisms ofAs-Extruded Mg-3Zn-1Y Magnesium AlloyUnder High Strain Rates |
Xudong LI, Pingli MAO( ), Yanyu LIU, Zheng LIU, Zhi WANG, Feng WANG |
School of Materials Science and Engineering, Shenyang University of Technology, Shenyang 110870, China |
|
Cite this article:
Xudong LI, Pingli MAO, Yanyu LIU, Zheng LIU, Zhi WANG, Feng WANG. Anisotropy and Deformation Mechanisms ofAs-Extruded Mg-3Zn-1Y Magnesium AlloyUnder High Strain Rates. Acta Metall Sin, 2018, 54(4): 557-565.
|
Abstract As a very important design principle, the dynamic properties of materials attracted extensive attention in resent years and a bunch of works have been done concerning with the materials deformation behaviors under high strain rates. However, the dynamic behaviors of magnesium alloys are not through understood, especially the rare earth based magnesium alloys. In order to investigate the dynamic and anisotropic behavior under high strain rates deformation of as-extruded Mg-3Zn-1Y magnesium alloy, the split Hopkinson pressure bar (SHPB) apparatus was used to testing the true stress-true strain curves under the high strain rates of 1000, 1500 and 2200 s-1 of as-extruded Mg-3Zn-1Y magnesium alloy. The OM and SEM were used to analysis the micorstructure evolution and fracture surface morphology of the alloy. The true reason behind the anisotropic phenomenon was revealed based on the deformation mechanism of highly basal-textured magnesium alloy. The results demonstrate that the as-extruded Mg-3Zn-1Y magnesium alloy exhibits pronounced anisotropy during compression according to the loading direction. The anisotropy of the as-extruded Mg-3Zn-1Y magnesium alloy are arised from the variety of the deformation mechanisms. When the loading direction is along extrusion direction, the predominant deformation mode changes from extension twinning at a lower strain to prismatic slip at a higher strain. While compressed along extrusion radial direction (ERD), the predominant deformation mode changes from contraction twinning to a coordination of basal and second order pyramidal slip with the increasing of strain.
|
Received: 25 April 2017
|
|
Fund: Supported by Science and Technology Project of Shenyang (No.17-9-6-00) |
[1] | Mordike B L, Ebert T.Magnesium: Properties-applications-potential[J]. Mater. Sci. Eng., 2001, A302: 37 | [2] | Aghion E, Bronfin B. Magnesium alloys development towards the 21st century [J]. Mater. Sci. Forum, 2000, 350-351: 19 | [3] | Van Fleteren R.Magnesium for automotive applications[J]. Adv. Mater. Process., 1996, 149(5): 33 | [4] | Kleiner S, Uggowitzer P J.Mechanical anisotropy of extruded Mg-6% Al-1% Zn alloy[J]. Mater. Sci. Eng., 2004, A379: 258 | [5] | Bohlen J, Nürnberg M R, Senn J W, et al.The texture and anisotropy of magnesium-zinc-rare earth alloy sheets[J]. Acta Mater., 2007, 55: 2101 | [6] | Yin S M, Wang C H, Diao Y D, et al.Influence of grain size and texture on the yield asymmetry of Mg-3Al-1Zn alloy[J]. J. Mater. Sci. Technol., 2011, 27: 29 | [7] | Ball E A, Prangnell P B.Tensile-compressive yield asymmetries in high strength wrought magnesium alloys[J]. Scr. Metall. Mater., 1994, 31: 111 | [8] | Yin D L, Wang J T, Liu J Q, et al.On tension-compression yield asymmetry in an extruded Mg-3Al-1Zn alloy[J]. J. Alloys Compd., 2009, 478: 789 | [9] | Mao P L, Liu Z, Wang C Y, et al.Deformation microstructure of AZ31B magnesium alloy under high strain rate compression[J]. Chin. J. Nonferrous Met., 2009, 19: 816(毛萍莉, 刘正, 王长义 等. 高应变速率下AZ31B镁合金的压缩变形组织 [J]. 中国有色金属学报, 2009, 19: 816) | [10] | Watanabe H, Ishikawa K.Effect of texture on high temperature deformation behavior at high strain rates in a Mg-3Al-1Zn alloy[J]. Mater. Sci. Eng., 2009, A523: 304 | [11] | Agnew S R, Duygulu ?.Plastic anisotropy and the role of non-basal slip in magnesium alloy AZ31B[J]. Int. J. Plast., 2005, 21: 1161 | [12] | Nave M D, Barnett M R.Microstructures and textures of pure magnesium deformed in plane-strain compression[J]. Scr. Mater., 2004, 51: 881 | [13] | Yang Y B, Wang F C, Tan C W, et al.Plastic deformation mechanisms of AZ31 magnesium alloy under high strain rate compression[J]. Trans. Nonferrous Met. Soc. China, 2008, 18: 1043 | [14] | Barnett M R, Keshavarz Z, Beer A G, et al.Influence of grain size on the compressive deformation of wrought Mg-3Al-1Zn[J]. Acta Mater., 2004, 52: 5093 | [15] | Barnett M R.Twinning and the ductility of magnesium alloys: Part II. "Contraction" twins[J]. Mater. Sci. Eng., 2007, A464: 8 | [16] | Wan G, Wu B L, Zhang Y D, et al.Anisotropy of dynamic behavior of extruded AZ31 magnesium alloy[J]. Mater. Sci. Eng., 2010, A527: 2915 | [17] | Liu Z, Zhang K, Zeng X Q.Theory and Application of Mg-Based Light Alloy [M]. Beijing: China Machine Press, 2002: 32(刘正, 张奎, 曾小勤. 镁基轻质合金理论基础及其应用 [M]. 北京: 机械工业出版社, 2002: 32) | [18] | Barnett M R.Twinning and the ductility of magnesium alloys: Part I: "Tension" twins[J]. Mater. Sci. Eng., 2007, A464: 1 | [19] | Jiang L, Jonas J J, Mishra R K, et al.Twinning and texture development in two Mg alloys subjected to loading along three different strain paths[J]. Acta Mater., 2007, 55: 3899 | [20] | Jiang L, Jonas J J, Luo A A, et al. Influence of {10$\bar{1}$2} extension twinning on the flow behavior of AZ31 Mg alloy [J]. Mater. Sci. Eng., 2007, A445-446: 302 | [21] | Brown D W, Agnew S R, Bourke M A M, et al. Internal strain and texture evolution during deformation twinning in magnesium[J]. Mater. Sci. Eng., 2005, A399: 1 | [22] | Gehrmann R, Frommert M M, Gottstein G.Texture effects on plastic deformation of magnesium[J]. Mater. Sci. Eng., 2005, A395: 338 | [23] | Wang M Y, Xin R L, Wang B S, et al.Effect of initial texture on dynamic recrystallization of AZ31 Mg alloy during hot rolling[J]. Mater. Sci. Eng., 2010, A528: 2941 | [24] | Christian J W, Mahajan S.Deformation twinning[J]. Prog. Mater. Sci., 1995, 39: 1 | [25] | Luo J R, Liu Q, Liu W.Influence of rolling temperature on the {1010$\bar{1}$1}-{10$\bar{1}$21}-{10$\bar{1}$1}-{10$\bar{1}$2} twinning in rolled AZ31 magnesium alloy sheets[J]. Acta Metall. Sin., 2012, 48: 717(罗晋如, 刘庆, 刘伟. 轧制温度对AZ31镁合金轧制板材中的{1010$\bar{1}$1}-{10$\bar{1}$21}-{1010$\bar{1}$1}-{10$\bar{1}$22}双孪生行为的影响 [J]. 金属学报, 2012, 48: 717) | [26] | Chen Z H, Xia W J, Cheng Y Q, et al.Texture and anisotropy in magnesium alloys[J]. Chin. J. Nonferrous Met., 2005, 15: 1(陈振华, 夏伟军, 程永奇 等. 镁合金织构与各向异性 [J]. 中国有色金属学报, 2005, 15: 1) | [27] | Bingert J F, Mason T A, Kaschner G C, et al.Deformation twinning in polycrystalline Zr: Insights from electron backscattered diffraction characterization[J]. Metall. Mater. Trans., 2002, 33A: 955 |
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|