Please wait a minute...
Acta Metall Sin  2017, Vol. 53 Issue (12): 1555-1567    DOI: 10.11900/0412.1961.2017.00324
Orginal Article Current Issue | Archive | Adv Search |
Research Status of Biomedical Porous Ti and Its Alloy in China
Erlin ZHANG1, Xiaoyan WANG2, Yong HAN3()
1 Key Laboratory for Anisotropy and Texture of Materials, Ministry of Education, School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China
2 School of Metallurgy, Northeastern University, Shenyang 110819, China
3 State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
Cite this article: 

Erlin ZHANG, Xiaoyan WANG, Yong HAN. Research Status of Biomedical Porous Ti and Its Alloy in China. Acta Metall Sin, 2017, 53(12): 1555-1567.

Download:  HTML  PDF(5109KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Porous Ti not only inherits the physical and chemical properties of titanium alloy, such as higher special stiffness, special strength, excellent corrosion resistance and biocompatibility, but also its unique pore structure gives it the characteristic of ultra-low density and large surface area. It is an alternative material for human body with structural and functional integration. It has been widely used in the field of clinical medicien in recent years. Many research and applications show that the properties and functions of porous Ti strongly depend on the pore structure of porous Ti prepared by different methods. Surface activation technology can significantly improve the surface activity of porous Ti and shorten the healing period after implantation. In this paper the common preparation methods of porous Ti were introduced based on the structure and properties of porous Ti. The surface modification, biological activity, osteoinductive properties of porous Ti and their domestic research status were summrized. The development of biomedical porous Ti and titanium alloys was prospected.

Key words:  porous Ti      titanium alloy      corrosion resistance      biocompatibility      preparation method      surface modification     
Received:  31 July 2017     
ZTFLH:  TG146.23  
Fund: Supported by State Key Laboratory for Mechanical Behavior of Materials (No.20151703)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2017.00324     OR     https://www.ams.org.cn/EN/Y2017/V53/I12/1555

Classification Sub-classification
Sinter method Method of pore-forming agent, method of fiber entanglement, microsphere stacking method, sponge-soaking process, foaming method etc.
Method of rapid prototyping Gelcasting method, 3D printing method, injection shaping method etc.
Deposition method Reactive deposition method, electrodeposition method, vacuum evaporation method, plasma spraying method etc.
Table 1  Preparation methods of porous Ti and its alloy[19,20]
Classification Sub-classification
Mechanical method Cutting method, grinding method, polishing method, sandblast method and laser etching method etc.
Physical method Thermal spraying method, ion implantation method, laser cladding method, ion beam sputtering method and magnetron sputtering method etc.
Chemical method Acid treatment, alkali treatment, acid and alkaline 2-step, sol-gel method and surface induced mineralization etc.
Electrochemical method Micro-arc oxidation, anodic oxidation, electrochemical crystallization and electrophoretic deposition etc.
Biochemical method Protein activation, growth factor activation and active peptide activation etc.
Table 2  Surface modification methods of porous Ti and its alloy[60]
Materal E / GPa σt / MPa σc / MPa σN / MPa
Bone tissue 0.3~30 121~146 88.3~193.0 -
Stainless steel 200 465~950 170~310 170~750
CoCrMo alloy 200~230 600~1795 - 275~1585
Pure Ti 102.7~104.1 240~550 590~1117 170~485
TC4 alloy 50~114 860~930 - 795~896
Porous Ti 18~20 - 13.5~237.0 40
Table 3  Mechanical properties of autologous bone and bone repair materials[78,79]
Fig.1  XRD spectra of pure Ti after surface treatment by different methods[82] (AH—alkali-heat treatment, AC—acid treatment, MAO—micro-arc oxidation)
Fig.2  SEM images of bioactive layer on the Ti surface after heat treatment at 400 ℃ (a~c), 600 ℃ (d~f) and 800 ℃ (g~i) for 0.5 h (a, d, g), 1 h (b, e, h) and 2 h (c, f, i) (surface Ca content is (0.42±0.05)%, atomic fraction) [83]
Fig.3  Outgrowth of new bone along 0.5% (mass fraction) Si-HA coating outside (fluorescence observation, HA—hydroxyapatite, differences of bone tissue growth are distinguished by red lines in figure) [83]
Fig.4  Ingrowth of new bone into porous Ti with 0.5%Si-HA coating (fluorescence observation, differences of bone tissue growth are distinguished by red lines in figure) [83]
Group 1 d 2 d 3 d 4 d
Porous Ti 0.0865±0.0234 0.1568±0.0254 0.2786±0.0198 0.3246±0.0236
Porous HA 0.0901±0.0189 0.1578±0.0216 0.2895±0.0235 0.3328±0.0186
Table 4  Absorbance of cultured cells on the surface of porous Ti and HA[90]
Fig.5  Growth of cells on porous Ti (a) and HA (b) [90]
[1] Hu H B, Liu H Q, Wang J E, et al.Research progress of biomedical porous titanium and its alloys[J]. Mater. Rev., 2012, 26(suppl.): 262(胡海波, 刘会群, 王杰恩等. 生物医用多孔钛及钛合金的研究进展[J]. 材料导报, 2012, 26(增刊): 262)
[2] Hara D, Nakashima Y, Sato T, et al.Bone bonding strength of diamond-structured porous titanium-alloy implants manufactured using the electron beam-melting technique[J]. Mater. Sci. Eng., 2016, C59: 1047
[3] Ahmadi S M, Hedayati R, Ashok Kumar Jain R K, et al. Effects of laser processing parameters on the mechanical properties, topology, and microstructure of additively manufactured porous metallic biomaterials: A vector-based approach[J]. Mater. Des., 2017, 134: 234
[4] Bobbert F S L, Lietaert K, Eftekhari A A, et al. Additively manufactured metallic porous biomaterials based on minimal surfaces: A unique combination of topological, mechanical, and mass transport properties[J]. Acta Biomater., 2017, 53: 572
[5] Van Bael S, Chai Y C, Truscello S, et al.The effect of pore geometry on the in vitro biological behavior of human periosteum-derived cells seeded on selective laser-melted Ti6Al4V bone scaffolds[J]. Acta Biomater., 2012, 8: 2824
[6] Kato H, Nakamura T, Nishiguchi S, et al.Bonding of alkali- and heat-treated tantalum implants to bone[J]. J. Biomed. Mater. Res., 2000, 53(1): 28
[7] Bagno A, Di Bello C.Surface treatments and roughness properties of Ti-based biomaterials[J]. J. Mater. Sci. Mater. Med., 2004, 15: 935
[8] Gain A K, Zhang L C, Quadir M Z.Composites matching the properties of human cortical bones: The design of porous titanium-zirconia (Ti-ZrO2) nanocomposites using polymethyl methacrylate powders[J]. Mater. Sci. Eng., 2016, A662: 258
[9] Omtan A M, Woo K D, Kang D S, et al.Fabrication and evaluation of porous Ti-HA bio-nanomaterial by leaching process[J]. Ar. J. Chem., 2015, 8: 372
[10] Ahn M K, Jo I H, Koh Y H, et al.Production of highly porous titanium (Ti) scaffolds by vacuum-assisted foaming of titanium hydride (TiH2) suspension[J]. Mater. Lett., 2014, 120: 228
[11] Chen S Y, Huang J C, Pan C T, et al.Microstructure and mechanical properties of open-cell porous Ti-6Al-4V fabricated by selective laser melting[J]. J. Alloys Compd., 2017, 713: 248
[12] Roy S, Khutia N, Das D, et al.Understanding compressive deformation behavior of porous Ti using finite element analysis[J]. Mater. Sci. Eng., 2016, C64: 436
[13] Hsu H C, Wu S C, Hsu S K, et al.Effect of ball milling on properties of porous Ti-7.5Mo alloy for biomedical applications[J]. J. Alloys Compd., 2014, 582: 793
[14] Takemoto M, Fujibayashi S, Neo M, et al.Mechanical properties and osteoconductivity of porous bioactive titanium[J]. Biomaterials, 2005, 26: 6014
[15] Chang B S, Lee C K, Hong K S, et al.Osteoconduction at porous hydroxyapatite with various pore configurations[J]. Biomaterials, 2000, 21: 1291
[16] Zardiackas L D, Parsell D E, Dillon L D, et al.Structure, metallurgy, and mechanical properties of a porous tantalum foam[J]. J. Biomed. Mater. Res., 2001, 58: 180
[17] Wen C E, Yamada Y, Shimojima K, et al.Processing and mechanical properties of autogenous titanium implant materials[J]. J. Mater. Sci. Mater. Med., 2002, 13: 397
[18] Daculsi G, Passuti N.Effect of the macroporosity for osseous substitution of calcium phosphate ceramics[J]. Biomaterials, 1990, 11: 86
[19] Zhang L.Preparation methods and influencing factors of structural properties of porous titanium [D]. Chengdu: Southwest Jiaotong University, 2013(张力. 多孔钛制备方法及结构性能影响因素研究 [D]. 成都: 西南交通大学, 2013)
[20] Liu J.Preparation and mechanical properties of porous titanium [D]. Shenyang: Northeastern University, 2012(刘杰. 多孔钛的制备及力学性能研究 [D]. 沈阳: 东北大学, 2012)
[21] Chen R B.Research on powder sintering preparation and properties of porous titanium [D]. Shenyang: Shenyang Ligong University, 2011(陈睿博. 多孔钛的粉末烧结制备与性能研究 [D]. 沈阳: 沈阳理工大学, 2011)
[22] Li B Q.Study on the microstructure and properties of porous Ti [D]. Dalian: Dalian Jiaotong University, 2011(李伯琼. 多孔钛的微观结构与性能研究 [D]. 大连: 大连交通大学, 2011)
[23] Zhang L, Cao S H, Duan K, et al.Effects of processing condition on microstructure and properties of porous Titanium prepared by porogen-based vacuum sintering[J]. Hot Work. Technol., 2013, 42(18): 84(张力, 曹书豪, 段可等. 颗粒造孔制备多孔钛中结构及性能影响因素[J]. 热加工工艺, 2013, 42(18): 84)
[24] Zhang W, Shang Q L, Liu J, et al.Simple analysis on the effect of pore forming material content control on porous biomaterials[J]. Yunnan Metall., 2016, 45(2): 109(张玮, 尚青亮, 刘捷等. 浅析造孔剂含量控制对生物多孔钛材的影响[J]. 云南冶金, 2016, 45(2): 109)
[25] Wang H B, Sun Q Z.Research on the influence of foaming agent to porous titanium[J]. Guangzhou Chem. Ind., 2014, 42(8): 88(王海波, 孙青竹. 发泡剂对多孔钛材料影响的研究[J]. 广州化工, 2014, 42(8): 88)
[26] Wang X H, Li J S, Hu R, et al.Mechanical properties of porous titanium with different distributions of pore size[J]. Trans. Nonferrous Met. Soc. China, 2013, 23: 2317
[27] Wang X H, Li J S, Hu R, et al.Mechanical properties and pore structure deformation behaviour of biomedical porous titanium[J]. Trans. Nonferrous Met. Soc. China, 2015, 25: 1543
[28] Zou C M, Zhang E L, Zeng S Y.Porous titanium by fiber sintering and its biomimetic Ca-P coating[J]. Rare Met. Mater. Eng., 2007, 36: 1394(邹鹑鸣, 张二林, 曾松岩. 纤维烧结多孔钛及其表面生长仿生Ca-P涂层[J]. 稀有金属材料与工程, 2007, 36: 1394)
[29] Qu Z M, Zhang E L.Experimental study on surface modification of biomedical porous titanium [A]. Proceeding 10th National Surface Engineering Conference[C]. Wuhan: Chinese society of Mechanical Engineering, National Surface Engineering, 2014, 2: 45(曲泽明, 张二林. 生物医用多孔钛表面改性的实验研究 [A]. 第十届全国表面工程大会暨第六届全国青年表面工程论坛论文集[C]. 武汉: 中国机械工程学会, 中国表面工程协会, 2014, 2: 45)
[30] Zhang E L, Zhou C M.Porous titanium and silicon-substituted hydroxyapatite biomodification prepared by a biomimetic process: Characterization and in vivo evaluation[J]. Acra Biomater., 2009, 5: 1732
[31] Zhang E L, Zhou C M, Zeng S Y.Preparation and characterization of silicon-substituted hydroxyapatite coating by a biomimetic process on titanium substrate[J]. Surf. Coat. Technol., 2009, 203: 1075
[32] Zou C M, Zhang E L, Li M W, et al.Preparation, microstructure and mechanical properties of porous titanium sintered by Ti fibres[J]. J Mater. Sci. Mater. Med., 2008, 19: 401
[33] He G, Liu P, Tan Q B.Porous titanium materials with entangled wire structure for load-bearing biomedical applications[J]. J. Mech. Behav. Biomed. Mater., 2012, 5(1): 16
[34] Jiang G F, He G.Enhancement of the porous titanium with entangled wire structure for load-bearing biomedical applications[J]. Mater. Des., 2014, 56: 241
[35] Liu Y, Jiang G F, He G.Enhancement of entangled porous titanium by BisGMA for load-bearing biomedical applications[J]. Mater. Sci. Eng., 2016, C61: 37
[36] Jiang G F, He G.A new approach to the fabrication of porous magnesium with well-controlled 3D pore structure for orthopedic applications[J]. Mater. Sci. Eng., 2014, C43: 317
[37] Liu P, Tan Q B, Wu L H, et al.Compressive and pseudo-elastic hysteresis behavior of entangled titanium wire materials[J]. Mater. Sci. Eng., 2010, A527: 3301
[38] Tan Q B, He G.Stretching behaviors of entangled materials with spiral wire structure[J]. Mater. Des., 2013, 46: 61
[39] Chang B, Song W, Han T X, et al.Influence of pore size of porous titanium fabricated by vacuum diffusion bonding of titanium meshes on cell penetration and bone ingrowth[J]. Acta Biomater., 2016, 33: 311
[40] Li F P, Li J S, Xu G S, et al.Fabrication, pore structure and compressive behavior of anisotropic porous titanium for human trabecular bone implant applications[J]. J. Mech. Behav. Biomed. Mater., 2015, 46: 104
[41] Li S T, Zhu R F, Zhen L, et al.Effect of sintering temperature on microstructure and properties of porous titanium[J]. J. Heat Treat. Mater., 2009, 30(2): 93(李士同, 朱瑞富, 甄良等. 烧结温度对多孔钛组织结构与性能的影响[J]. 材料热处理学报, 2009, 30(2): 93)
[42] Han L, Zhu Y, Zhang N, et al.Evaluation of the bone binding capacity of TiO2 coating on vacuum sintered porous titanium substrate surface treated by micro-arc oxidation technique[J]. Chin. J. Stereol. Image Anal., 2013, 18: 159(韩磊, 朱杨, 张宁等. 真空烧结多孔钛基体表面微弧氧化制备TiO2涂层的骨结合能力评价[J]. 中国体视学与图像分析, 2013, 18: 159)
[43] Zhao J, Lu X, Wang J X, et al.Preparation of porous Ti metal composite scaffold with bioactivity[J]. J. Biomed. Eng., 2009, 26: 795(赵婧, 鲁雄, 汪建新等. 具有生物活性的多孔钛金属复合支架的制备[J]. 生物医学工程学杂志, 2009, 26: 795)
[44] Zhang Q Y, Chen J Y, Zhang X D.Fabrication of porous titanium and biomimetic deposition of apatite coatings[J]. J. Sichuan Univ.(Nat. Sci. Ed.), 2003, 40: 700(张其翼, 陈继镛, 张兴栋. 多孔钛的制备及磷灰石涂层的仿生沉积[J]. 四川大学学报(自然科学版), 2003, 40: 700)
[45] Li Y, Guo Z M, Hao J J.On gelcasting of medical porous titanium implants[J]. Powder Metall. Ind., 2008, 18(1): 10(李艳,郭志猛,郝俊杰. 医用多孔钛植入材料凝胶注模成形工艺研究[J]. 粉末冶金工业, 2008, 18(1): 10)
[46] Hu H B, Fu S, Wang J E, et al.The influence of monomer concentration on gelation and property of porous titanium[J]. Rare Met. Cement. Carbid., 2011, 39(4): 31(胡海波, 傅上, 王杰恩等. 单体浓度对多孔钛凝胶固化过程及性能的影响[J]. 稀有金属与硬质合金, 2011, 39(4): 31)
[47] Fan L P, Shao H P, Yang D H, et al.Effect of cobalt on titanium alloy implants for medical application by gelcasting[J]. Powder Metall. Ind., 2010, 20(4): 38(樊联鹏, 邵慧萍, 杨栋华等. 钴对凝胶注模成形医用植入钛合金材料的影响[J]. 粉末冶金工业, 2010, 20(4): 38)
[48] Lv Z H, Wang J Y, Wu Z L, et al.A study on titanium-bioglass porous biocomposites by gel-casting[J]. J. Jiamusi Univ.(Nat. Sci. Ed.), 2007, 25: 627(吕忠华, 王晶彦, 吴壮丽等. 凝胶柱模成型钛-生物玻璃多孔生物复合材料研究[J]. 佳木斯大学学报(自然科学版), 2007, 25: 627)
[49] Zhu W.Platelet adhered gelatin scaffold in 3D printing porous titanium mimicking extracellular matrix and its function [D]. Beijing: Beijing Union Medical College, 2016(朱威. 具备血小板复合细胞外基质的3D打印多孔钛支架及其仿生功能化 [D]. 北京: 北京协和医学院, 2016)
[50] Feng C D, Xia Y, Li X, et al.Micro-pore structure and mechanical properties of porous titanium scaffold using 3D print technology[J]. J. Med. Biomechn., 2017, 32: 256(冯辰栋, 夏宇, 李祥等. 3D打印多孔钛支架微观孔隙结构和力学性能[J]. 医用生物力学, 2017, 32: 256)
[51] Zhang X W.Research of osteogenesis enhancement function of additively manufactured porous Ti implants combined with CS/HA coating [D]. Jinan: Shandong University, 2016(张欣蔚. 3D打印多孔钛种植体结合CS/HA涂层促骨结合作用的研究 [D]. 济南: 山东大学, 2016)
[52] Wang Z Y.Preparation of porous 316L stainless steel and porous titanium by selective laser melting [D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2010(王志阳. 选区激光熔化制备多孔316L不锈钢和多孔钛的研究 [D]. 南京: 南京航空航天大学, 2010)
[53] Qi L J, Li Z F, Zhang C Y, et al.Design and analysis of manufacturing porous titanium structures based on selective laser melting[J]. Machinery, 2014, 41(5): 70(戚留举, 李子夫, 张春雨等. 基于选择性激光熔化制备多孔钛结构的设计及分析[J]. 机械, 2014, 41(5): 70)
[54] Wang Y, Shen Y F, Wang Z Y, et al.Development of highly porous titanium scaffolds by selective laser melting[J]. Mater. Lett., 2010, 64: 674
[55] Xie F X, He X M, Lv Y M, et al.Research progress in laser rapid forming of porous titanium and its alloys for biomedical applications[J]. Mater. Rev., 2016, 30A(7): 109(颉芳霞, 何雪明, 吕彦明等. 生物医用多孔钛及钛合金激光快速成形研究进展[J]. 材料导报, 2016, 30A(7): 109)
[56] Jing D, Tong S C, Zhai M M, et al.Microstructural analysis on repairing effects of synergetic application of pulsed electromagnetic fields and porous titanium alloy on rabbit long bone defects[J]. High Volt. Eng., 2014, 40: 3793(景达, 佟世超, 翟明明等. 脉冲电磁场协同多孔钛合金对兔长骨缺损修复效果的微观结构分析[J]. 高电压技术, 2014, 40: 3793)
[57] Liu B D, Guo Z, Hao Y L, et al.Effect of pore sizes of porous titanium alloys as bone material on bone formation[J]. Prog. Mod. Biomed., 2012, 12: 1601(刘邦定, 郭征, 郝玉琳等. 多孔钛合金不同孔径大小对新骨长入的影响[J]. 现代生物医学进展, 2012, 12: 1601)
[58] Li T, Li Y M, Chen L J, et al.Fabrication of bioactive porous titanium by metal injection molding and its properties[J]. Rare Met. Mater. Eng., 2011, 40: 335(李挺, 李益民, 陈良建等. 注射成形制备多孔钛及其性能[J]. 稀有金属材料与工程, 2011, 40: 335)
[59] Cui X M, Chen L J, Zheng Y.Preparation of a new porous titanium implant[J]. Sci. Technol. Rev., 2012, 30(28): 71(崔晓明, 陈良建, 郑遥. 一种新型多孔钛种植体的制备与研究[J]. 科技导报, 2012, 30(28): 71)
[60] Hou L G.Studies on the preparation and properties of porous Ti-based metallic materials for biomedical applications [D]. Harbin: Harbin Engineering University, 2013(侯乐干. 医用多孔钛基金属材料制备及性能研究 [D]. 哈尔滨: 哈尔滨工程大学, 2013)
[61] Liu X Y, Chu P K, Ding C X.Surface modification of titanium, titanium alloys, and related materials for biomedical applications[J]. Mater. Sci. Eng., 2004, R47: 49
[62] Xu B, Zhao C Y, Cai B, et al.Porous titanium treated by nitric acid with varied concentration and the bioactivity in vitro[J]. J. Inorg. Mater., 2012, 27: 555(胥彬, 赵朝勇, 蔡兵等. 不同浓度硝酸处理的多孔钛及其体外生物活性[J]. 无机材料学报, 2012, 27: 555)
[63] Chen L J, Zhang S H, Li Y M, et al.Effect of porosity of modified porous titanium on osteoblastic cells[J]. Chin. J. Nonferrous Met., 2010, 20: 749(陈良建, 张思慧, 李益民等. 改性后不同孔隙度多孔钛对成骨细胞的影响[J]. 中国有色金属学报, 2010, 20: 749)
[64] Wang X H, Li J S, Hu R, et al.Preparation and characterization of bioactive coating without cracks on potous titanium surface[J]. Rare Met. Mater. Eng., 2014, 43: 1392(王晓花, 李金山, 胡锐等. 多孔钛表面无裂纹生物活化层的制备及表征[J]. 稀有金属材料与工程, 2014, 43: 1392)
[65] Yang H S, Li M Q, Zhuang M H.Study on formation of apatite coating by alkaline solution and heat treatment on porous titanium[J]. J. Jiamusi Univ.(Nat. Sci. Ed.), 2008, 26: 123(杨寒崧, 李慕勤, 庄明辉. 碱处理多孔钛制备磷灰石涂层的研究[J]. 佳木斯大学学报(自然科学版), 2008, 26: 123)
[66] Liang F H, Wang K G, Zhou L.Enhancement of the bioactivity of alkali-heat treated porous titanium by pre-calcification[J]. Rare Met. Mater. Eng., 2004, 33: 1013(梁芳慧, 王克光, 周廉. 利用预钙化处理提高碱热处理多孔钛的表面生物活性[J]. 稀有金属材料与工程, 2004, 33: 1013)
[67] Liang F H, Zhou L, Wang K G.Preparation of apatite coatings on porous titanium via chemical treatment[J]. J. Mater. Sci. Eng., 2003, 21: 485(梁芳慧, 周廉, 王克光. 化学处理制备多孔钛表面磷灰石涂层[J]. 材料科学与工程学报, 2003, 21: 485)
[68] Wen H B, Liu Q, De Wijin J R, et al. Preparation of bioactive microporous titanium surface by a new two-step chemical treatment[J]. J. Mater. Sci. Mater. Med., 1998, 9: 121
[69] Zhang Q Y, Leng Y, Xin R L.A comparative study of electrochemical deposition and biomimetic deposition of calcium phosphate on porous titanium[J]. Biomaterials, 2005, 26: 2857
[70] Zhao C Y, Zu X D, Liang K L, et al.Osteoinduction of porous titanium: A comparative study between acid-alkali and chemical-thermal treatments[J]. J. Biomed. Mater. Res., 2010, 95B: 387
[71] Ma Q Q, Li M H, Chen Q.Sol-Gel derived titania biocoatings on porous titanium substrate[J]. Mater. Rev., 2010, 24: 457(马奇奇, 李美姮, 陈芊. 溶胶-凝胶法在多孔钛表面制备二氧化钛生物涂层[J]. 材料导报, 2010, 24: 457)
[72] Hu Z Y.Hydroxyapatite coating prepared on porous titanium substrate by sol-gel [D]. Changsha: Hunan University, 2009(胡紫英. 溶胶-凝胶法在多孔钛表面制备羟基磷灰石涂层 [D]. 长沙: 湖南大学, 2009)
[73] Liu G Q, Jin Z G, Liu X X, et al.Anatase TiO2 porous thin films prepared by sol-gel method using CTAB surfactant[J]. J. Sol-Gel Sci. Technol., 2007, 41: 49
[74] Xu W, Hu W Y, Li M H, et al.Sol-gel derived hydroxyapatite/titania biocoatings on titanium substrate[J]. Mater. Lett., 2006, 60: 1575
[75] Li D C, Zhu Y, Han L.Evaluation of bone binding ability of titanium dioxide coating prepared by vacuum arc sintering on porous titanium substrate[J]. Chin. J. Oral Implantol., 2013, 18: 71)(李德超, 朱杨, 韩磊. 真空烧结多孔钛基体表面微弧氧化制备二氧化钛涂层的骨结合能力评价[J]. 中国口腔种植学杂志, 2013, 18: 71)
[76] Qi Y C, Zhang P, Li W.Preparation of porous ti and properties of surface oxidized films made by micro-arc oxidation[J]. Spec. Cast. Nonferrous Alloys, 2010, 30: 469(戚元臣, 张鹏, 李卫. 多孔钛及其微弧氧化膜层特性[J]. 特种铸造及有色合金, 2010, 30: 469)
[77] Liu S M, Li B E, Liang C Y, et al.Formation mechanism and adhesive strength of a hydroxyapatite/TiO2 composite coating on a titanium surface prepared by micro-arc oxidation[J]. Appl. Surf. Sci., 2016, 362: 109
[78] Xia Z Y, Sun J J, Li J W, et al.Progress in biomedical porous titanium research[J]. Prog. Mod. Biomed., 2015, 15: 5380(夏卓玙, 孙晶晶, 李建卫等. 医用多孔钛的研究进展[J]. 现代生物医学进展, 2015, 15: 5380)
[79] Li H.Research on preparation of porous titanium with biomechanical compatibility and bioactivity [D]. Chengdu: Sichuan University, 2005(李虎. 生物力学相容多孔钛的制备及其活化研究 [D]. 成都: 四川大学, 2005)
[80] Bao C Y, Zhang X D.Research development and prospect of calcium phosphate biomaterials with intrinsic osteoinductivity[J]. J. Biomed. Eng., 2006, 23: 442(包崇云, 张兴栋. 磷酸钙生物材料固有骨诱导性的研究现状与展望[J]. 生物医学工程学杂志, 2006, 23: 442)
[81] Habibovic P, De Groot K.Osteoinductive biomaterials-properties and relevance in bone repair[J]. J. Tissue Eng. Regen. Med., 2007, 1: 25
[82] Qu Z M.Preparation and surface modification of biomedical superelastic porous titanium [D]. Jiamusi: Jiamusi University, 2012(曲泽明. 超弹性生物医用多孔钛的制备及其表面改性 [D]. 佳木斯: 佳木斯大学, 2012)
[83] Zou C M.Biomedical porous titanium sintered by titanium wire and its surface Si-HA bioactivation [D]. Harbin: Harbin Institute of Technology, 2008(邹鹑鸣. 钛丝烧结制备医用多孔钛及其表面Si-HA生物活化 [D]. 哈尔滨: 哈尔滨工业大学, 2008)
[84] Zheng Y.The study of the effect on osseointegration of different porousity titanium implants [D]. Changsha: Central South University, 2008(郑遥. 不同孔隙度多孔钛种植体对骨整合影响的研究 [D]. 长沙: 中南大学, 2008)
[85] Otsukia B, Takemoto M, Fujibayashi S, et al.Pore throat size and connectivity determine bone and tissue ingrowth into porous implants: Three-dimensional micro-CT based structural analyses of porous bioactive titanium implants[J]. Biomaterials, 2006, 27: 5892
[86] Mastrogiacomo M, Scaglione S, Martinetti R, et al.Role of scaffold internal structure on in vivo bone formation in macroporous calcium phosphate bioceramics[J]. Biomaterials, 2006, 27: 3230
[87] Zhao C Y.Surface bioactivation of porous titanium with biomechanical compatibility and the bonding with bone [D]. Chengdu: Sichuan University, 2007(赵朝勇. 生物力学相容多孔钛的表面活化及与骨界面结合研究 [D]. 成都: 四川大学, 2007)
[88] Kim H M, Miyaji F, Kokubo T, et al.Bonding strength of bonelike apatite layer to Ti metal substrate[J]. J. Biomed. Mater. Res., 1997, 38: 121
[89] Nishiguchi S, Nakamura T, Kobayashi M, et al.The effect of heat treatment on bone-bonding ability of alkali-treated titanium[J]. Biomaterials, 1999, 20: 491
[90] Tan X X, Tan Y C, Jiang H J, et al.Adult osteoblasts cultured with porous titanium[J]. Orthop. Biomech. Mater. Clin. Study, 2007, 4(4): 5(谭训香, 谭远超, 姜红江等. 成人成骨细胞与多孔钛联合培养观察[J]. 生物骨科材料与临床研究, 2007, 4(4): 5)
[91] Yang Y, Ye Q, Jian Y T, et al.Osteoconduction and influence of porosity and pore size of porous titanium on the early stage differentiation of MC3T3-E1 cells[J]. Chin. J. Dent. Mater. Dev., 2014, 23: 9(杨越, 叶琦, 简裕涛等. 多孔钛的骨传导性及其孔隙结构对MC3T3-E1细胞早期分化的影响[J]. 口腔材料器械杂志, 2014, 23: 9)
[92] Albrektsson T, Johansson C.Osteoinduction, osteoconduction and osseointegration[J]. Eur. Spine. J., 2001, 10(suppl.2): S96
[93] Rosa A L, Crippa G E, De Oliveira P T, et al. Human alveolar bone cell proliferation, expression of osteoblastic phenotype, and matrix mineralization on porous titanium produced by powder metallurgy[J]. Clin. Oral Implants Res., 2009, 20: 472
[1] ZHAO Pingping, SONG Yingwei, DONG Kaihui, HAN En-Hou. Synergistic Effect Mechanism of Different Ions on the Electrochemical Corrosion Behavior of TC4 Titanium Alloy[J]. 金属学报, 2023, 59(7): 939-946.
[2] SI Yongli, XUE Jintao, WANG Xingfu, LIANG Juhua, SHI Zimu, HAN Fusheng. Effect of Cr Addition on the Corrosion Behavior of Twinning-Induced Plasticity Steel[J]. 金属学报, 2023, 59(7): 905-914.
[3] ZHANG Bin, TIAN Da, SONG Zhuman, ZHANG Guangping. Research Progress in Dwell Fatigue Service Reliability of Titanium Alloys for Pressure Shell of Deep-Sea Submersible[J]. 金属学报, 2023, 59(6): 713-726.
[4] XU Linjie, LIU Hui, REN Ling, YANG Ke. Effect of Cu on In-Stent Restenosis and Corrosion Resistance of Ni-Ti Alloy[J]. 金属学报, 2023, 59(4): 577-584.
[5] LI Shujun, HOU Wentao, HAO Yulin, YANG Rui. Research Progress on the Mechanical Properties of the Biomedical Titanium Alloy Porous Structures Fabricated by 3D Printing Technique[J]. 金属学报, 2023, 59(4): 478-488.
[6] WANG Luning, YIN Yuxia, SHI Zhangzhi, HAN Qianqian. Research Progress on Biocompatibility Evaluation of Biomedical Degradable Zinc Alloys[J]. 金属学报, 2023, 59(3): 319-334.
[7] ZHU Zhihao, CHEN Zhipeng, LIU Tianyu, ZHANG Shuang, DONG Chuang, WANG Qing. Microstructure and Mechanical Properties of As-Cast Ti-Al-V Alloys with Different Proportion of α / β Clusters[J]. 金属学报, 2023, 59(12): 1581-1589.
[8] GAO Han, LIU Li, ZHOU Xiaoyu, ZHOU Xinyi, CAI Wenjun, ZHOU Hongling. Preparation and Bioactivity of Micro-Nano Structure on Ti6Al4V Surface[J]. 金属学报, 2023, 59(11): 1466-1474.
[9] WANG Haifeng, ZHANG Zhiming, NIU Yunsong, YANG Yange, DONG Zhihong, ZHU Shenglong, YU Liangmin, WANG Fuhui. Effect of Pre-Oxidation on Microstructure and Wear Resistance of Titanium Alloy by Low Temperature Plasma Oxynitriding[J]. 金属学报, 2023, 59(10): 1355-1364.
[10] CUI Zhenduo, ZHU Jiamin, JIANG Hui, WU Shuilin, ZHU Shengli. Research Progress of the Surface Modification of Titanium and Titanium Alloys for Biomedical Application[J]. 金属学报, 2022, 58(7): 837-856.
[11] ZHAO Xiaofeng, LI Ling, ZHANG Han, LU Jie. Research Progress in High-Entropy Alloy Bond Coat Material for Thermal Barrier Coatings[J]. 金属学报, 2022, 58(4): 503-512.
[12] LI Xifeng, LI Tianle, AN Dayong, WU Huiping, CHEN Jieshi, CHEN Jun. Research Progress of Titanium Alloys and Their Diffusion Bonding Fatigue Characteristics[J]. 金属学报, 2022, 58(4): 473-485.
[13] YAN Mengqi, CHEN Liquan, YANG Ping, HUANG Lijun, TONG Jianbo, LI Huanfeng, GUO Pengda. Effect of Hot Deformation Parameters on the Evolution of Microstructure and Texture of β Phase in TC18 Titanium Alloy[J]. 金属学报, 2021, 57(7): 880-890.
[14] DAI Jincai, MIN Xiaohua, ZHOU Kesong, YAO Kai, WANG Weiqiang. Coupling Effect of Pre-Strain Combined with Isothermal Ageing on Mechanical Properties in a Multilayered Ti-10Mo-1Fe/3Fe Alloy[J]. 金属学报, 2021, 57(6): 767-779.
[15] HUANG Yichuan, WANG Qing, ZHANG Shuang, DONG Chuang, WU Aimin, LIN Guoqiang. Optimization of Stainless Steel Composition for Fuel Cell Bipolar Plates[J]. 金属学报, 2021, 57(5): 651-664.
No Suggested Reading articles found!