|
|
Effect of Hybrid Surface Nanocrystallization Before Welding on Microstructure and Mechanical Properties of Friction Stir Welded 2A14 Aluminum Alloy Joints |
Jianhai YANG1,Yuxiang ZHANG1( ),Liling GE2,Xiao CHENG3,Jiazhao CHEN1,Yang GAO1 |
1 Rocket Force University of Engineering, Xi'an 710025, China 2 School of Materials Science and Engineering, Xi'an University of Technology, Xi'an 710048, China 3 Chang Zheng Machinery Factory, China Aerospace Science and Technology Corporation, Chengdu 610100, China |
|
Cite this article:
Jianhai YANG,Yuxiang ZHANG,Liling GE,Xiao CHENG,Jiazhao CHEN,Yang GAO. Effect of Hybrid Surface Nanocrystallization Before Welding on Microstructure and Mechanical Properties of Friction Stir Welded 2A14 Aluminum Alloy Joints. Acta Metall Sin, 2017, 53(7): 842-850.
|
|
Abstract 2A14 aluminum alloy is the important raw materials of aerospace, which belongs to the heat treatment aluminum alloy. Friction stir welding (FSW) can weld aluminum alloy with high quality, and can avoid the pores and cracks of fusion welding effectively. In order to obtain better mechanical properties of FSW joints, the surface nanocrystallization method is introduced into FSW technology. By means of the hybrid surface nanocrystallization (HSNC) method of both supersonic fine particles bombarding (SFPB) and surface mechanical rolling treatment (SMRT), a smooth gradient nanostructured (GNS) layer was formed on the surface of 2A14 aluminum alloy before FSW. The FSW joints microstructure and fracture morphology of the original and HSNC specimens were researched by OM, SEM and TEM. The results showed that nanostructure layer zone (NLZ) was formed when GNS with shape similar to the "S" line was distributed in the thermal-mechanical affected zone (TMAZ) and the nugget zone (NZ) of the HSNC specimen. The lowest micro-hardness and fracture position of the original specimen occurred on the TMAZ of advancing side (AS). The lowest micro-hardness and fracture position of the HSNC specimen occurred on the NZ. The tensile strength of HSNC specimen was 6.4% higher than the original sample. The elongation of HSNC specimen was 14.1% more than the original specimen. The fracture mode of both specimens was toughness fracture. The fracture morphology of the HSNC was isometric dimple when the fracture morphology of original specimen were non-isometric dimple and avulsion dimple. Analysis showed that the NLZ of the FSW joints was beneficial to improving the strength and the plastic deformation capability simultaneously.
|
Received: 21 September 2016
|
Fund: Supported by National Natural Science Foundation of China (No.51275517), Science and Technology Project of Shaanxi Province (No.2009K06-22) and Special Project of Xi'an University of Technology (No.2014TS002) |
[1] | Wang Y R, Teng W H, Yu Y, et al.Microstructure and characteristics of joint of electron beam welds of 2A14 aluminum alloy[J]. Chin. J. Nonferrous Met., 2012, 22: 3307 | [1] | (王亚荣, 滕文华, 余洋等. 电子束焊接2A14铝合金接头的组织与特征[J]. 中国有色金属学报, 2012, 22: 3307) | [2] | Thomas W M, Nicholas E D, Needham J C, et al. Friction stir welding [P]. Great Britain Pat, 9125978.8, 1991 | [3] | Thomas W M, Nicholas E D, Needham J C, et al. Improvements relating to friction stir welding [P]. US Pat, 5460317, 1991 | [4] | Luan G H, North T H, Guo D L, et al.Characterizations of friction stir welding on aluminum alloy[J]. Trans. China Weld. Inst., 2002, 23(6): 62 | [4] | (栾国红, North T H, 郭德伦 等. 铝合金搅拌摩擦焊接头行为分析[J]. 焊接学报, 2002, 23(6): 62) | [5] | Lu K, Lu J.Surface nanocrystallization (SNC) of metallic materials——Presentation of the concept behind a new approach[J]. J. Mater. Sci. Technol., 1999, 15: 193 | [6] | Lu L, Sui M L, Lu K.Superplastic extensibility of nanocrystalline copper at room temperature[J]. Science, 2000, 287: 1463 | [7] | Lu K, Lu J. Nanostructured surface layer on metallic materials induced by surface mechanical attrition treatment [J]. Mater. Sci. Eng., 2004, A375-377: 38 | [8] | Yang J H, Zhang Y X, Ge L L, et al.Effect of hybrid surface nanocrystallization on the electrochemical corrosion behavior in 2A14 aluminum alloy[J]. Acta Metall. Sin., 2016, 52: 1413 | [8] | (杨建海, 张玉祥, 葛利玲等. 2A14铝合金混合表面纳米化对电化学腐蚀行为的影响[J]. 金属学报, 2016, 52: 1413) | [9] | Ge L L, Lu Z X, Jing X T, et al.Effect of surface nanocrystallization and thermal stability of 0Cr18Ni9 stainless steel on low temperature nitriding behavior[J]. Acta Metall. Sin., 2009, 45: 566 | [9] | (葛利玲, 卢正欣, 井晓天等. 0Cr18Ni9不锈钢表面纳米化组织及其热稳定性对低温渗氮行为的影响[J]. 金属学报, 2009, 45: 566) | [10] | Xu W F, Liu J H, Luan G H, et al.Microstructures and mechanical properties of friction stir welded aluminium alloy thick plate[J]. Acta Metall. Sin., 2008, 44: 1404 | [10] | (徐韦锋, 刘金合, 栾国红等. 厚板铝合金搅拌摩擦焊接头显微组织与力学性能[J]. 金属学报, 2008, 44: 1404) | [11] | Zhang H J, Wang M, Zhang X, et al.Characteristics and joint microstructure-property analysis of bobbin tool friction stir welding of 2A14-T6 aluminum alloy[J]. Trans. China Weld. Inst., 2015, 36(12): 65 | [11] | (张会杰, 王敏, 张骁等. 2A14-T6铝合金双轴肩搅拌摩擦焊特征及接头组织性能分析[J]. 焊接学报, 2015, 36(12): 65) | [12] | Malarvizhi S, Balasubramanian V.Fatigue crack growth resistance of gas tungsten arc, electron beam and friction stir welded joints of AA2219 aluminium alloy[J]. Mater. Des., 2011, 32: 1205 | [13] | Liu H J, Zhang H J, Huang Y X, et al.Mechanical properties of underwater friction stir welded 2219 aluminum alloy[J]. Trans. Nonferrous Met. Soc. China, 2010, 20: 1387 | [14] | Zhang H J, Liu H J, Yu L.Microstructure and mechanical properties as a function of rotation speed in underwater friction stir welded aluminum alloy joints[J]. Mater. Des., 2011, 32: 4402 | [15] | Zhang H J, Liu H J, Yu L.Microstructural evolution and its effect on mechanical performance of joint in underwater friction stir welded 2219-T6 aluminium alloy[J]. Sci. Technol. Weld. Joining, 2011, 16: 459 | [16] | Zhang H J, Liu H J.Mathematical model and optimization for underwater friction stir welding of a heat-treatable aluminum alloy[J]. Mater. Des., 2013, 45: 206 | [17] | Kang J, Li J C, Feng Z C, et al.Investigation on mechanical and stress corrosion cracking properties of weakness zone in friction stir welded 2219-T8 Al alloy[J]. Acta Metall. Sin., 2016, 52: 60 | [17] | (康举, 李吉超, 冯志操等. 2219-T8铝合金搅拌摩擦焊接头力学和应力腐蚀性能薄弱区研究[J]. 金属学报, 2016, 52: 60) | [18] | Wang D, Wang Q Z, Xiao B L, et al.Effect of heat treatment before welding on microstructure and mechanical properties of friction stir welded SiCp/Al-Cu-Mg composite joints[J]. Acta Metall. Sin., 2014, 50: 489 | [18] | (王东, 王全兆, 肖伯律等. 焊前热处理状态对SiCp/Al-Cu-Mg复合材料搅拌摩擦焊接头微观组织和力学性能的影响[J]. 金属学报, 2014, 50: 489) | [19] | Bai T.Research on the stress corrosion cracking susceptibility of the stainless steel with surface nanocrystallization by small punch test [D]. Shanghai: East China University of Science and Technology, 2013 | [19] | (白涛. 不锈钢表面纳米化对应力腐蚀敏感性影响的小冲杆试验研究 [D]. 上海: 华东理工大学, 2013) | [20] | Ji S D, Wen Q, Ma L, et al.Microstructure along thickness direction of friction stir welded TC4 titanium alloy joint[J]. Acta Metall. Sin., 2015, 51: 1391 | [20] | (姬书得, 温泉, 马琳等. TC4钛合金搅拌摩擦焊厚度方向的显微组织[J]. 金属学报, 2015, 51: 1391) | [21] | Huang H W, Wang Z B, Liu L, et al.Formation of a gradient nanostructured surface layer on a martensitic stainless steel and its effects on the electrochemical corrosion behavior[J]. Acta Metall. Sin., 2015, 51: 513 | [21] | (黄海威, 王镇波, 刘莉等. 马氏体不锈钢上梯度纳米结构表层的形成及其对电化学腐蚀行为的影响[J]. 金属学报, 2015, 51: 513) | [22] | Roland T, Retraint D, Lu K, et al. Enhanced mechanical behavior of a nanocrystallised stainless steel and its thermal stability [J]. Mater. Sci. Eng., 2007, A445-446: 281 | [23] | Liu J, Yang J H, Han F W, et al.Microstructures and properties of thickness aluminium alloy eleocellarium repairing welding joint by friction stir welding[J]. J. Mater. Eng., 2012, (7): 29 | [23] | (刘杰, 杨景宏, 韩凤武等. 厚板铝合金搅拌摩擦焊匙孔补焊接头组织与性能[J]. 材料工程, 2012, (7): 29) | [24] | Nabarro F R N, Mura T. Dislocations in solids: Dislocations in metallurgy (Vol.4)[J]. J. Appl. Mech., 1981, 48: 451 | [25] | Shi H F, Ren X.Mechanical Properties of Materials [M]. Beijing: Peking University Press, 2010: 35 | [25] | (时海芳, 任鑫. 材料力学性能 [M]. 北京: 北京大学出版社, 2010: 35) |
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|