Please wait a minute...
Acta Metall Sin  2017, Vol. 53 Issue (7): 842-850    DOI: 10.11900/0412.1961.2016.00421
Orginal Article Current Issue | Archive | Adv Search |
Effect of Hybrid Surface Nanocrystallization Before Welding on Microstructure and Mechanical Properties of Friction Stir Welded 2A14 Aluminum Alloy Joints
Jianhai YANG1,Yuxiang ZHANG1(),Liling GE2,Xiao CHENG3,Jiazhao CHEN1,Yang GAO1
1 Rocket Force University of Engineering, Xi'an 710025, China
2 School of Materials Science and Engineering, Xi'an University of Technology, Xi'an 710048, China
3 Chang Zheng Machinery Factory, China Aerospace Science and Technology Corporation, Chengdu 610100, China
Cite this article: 

Jianhai YANG,Yuxiang ZHANG,Liling GE,Xiao CHENG,Jiazhao CHEN,Yang GAO. Effect of Hybrid Surface Nanocrystallization Before Welding on Microstructure and Mechanical Properties of Friction Stir Welded 2A14 Aluminum Alloy Joints. Acta Metall Sin, 2017, 53(7): 842-850.

Download:  HTML  PDF(1423KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

2A14 aluminum alloy is the important raw materials of aerospace, which belongs to the heat treatment aluminum alloy. Friction stir welding (FSW) can weld aluminum alloy with high quality, and can avoid the pores and cracks of fusion welding effectively. In order to obtain better mechanical properties of FSW joints, the surface nanocrystallization method is introduced into FSW technology. By means of the hybrid surface nanocrystallization (HSNC) method of both supersonic fine particles bombarding (SFPB) and surface mechanical rolling treatment (SMRT), a smooth gradient nanostructured (GNS) layer was formed on the surface of 2A14 aluminum alloy before FSW. The FSW joints microstructure and fracture morphology of the original and HSNC specimens were researched by OM, SEM and TEM. The results showed that nanostructure layer zone (NLZ) was formed when GNS with shape similar to the "S" line was distributed in the thermal-mechanical affected zone (TMAZ) and the nugget zone (NZ) of the HSNC specimen. The lowest micro-hardness and fracture position of the original specimen occurred on the TMAZ of advancing side (AS). The lowest micro-hardness and fracture position of the HSNC specimen occurred on the NZ. The tensile strength of HSNC specimen was 6.4% higher than the original sample. The elongation of HSNC specimen was 14.1% more than the original specimen. The fracture mode of both specimens was toughness fracture. The fracture morphology of the HSNC was isometric dimple when the fracture morphology of original specimen were non-isometric dimple and avulsion dimple. Analysis showed that the NLZ of the FSW joints was beneficial to improving the strength and the plastic deformation capability simultaneously.

Key words:  aluminum alloy      hybrid surface nanocrystallization      friction stir welding      microstructure      mechanical property     
Received:  21 September 2016     
Fund: Supported by National Natural Science Foundation of China (No.51275517), Science and Technology Project of Shaanxi Province (No.2009K06-22) and Special Project of Xi'an University of Technology (No.2014TS002)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2016.00421     OR     https://www.ams.org.cn/EN/Y2017/V53/I7/842

Fig.1  Schematic of surface mechanical rolling treatment equipment[19]
Fig.2  Photo of friction stir welding (FSW) head
Fig.3  Cross-sectional OM images of the FSW joints of the original (a) and the hybrid surface nanocrystallization (HSNC) (b) specimens (TMAZ—thermal-mechanical affected zone, NZ—nugget zone, HAZ—heat affected zone, BM—base metal, AS—advancing side, RS—retreating side)
Fig.4  OM image of the 2A14 aluminum alloy BM
Fig.5  OM images of the original and HSNC specimens (NLZ—nanostructure layer zone)(a) TMAZ of the original specimen(b) TMAZ of AS of the HSNC specimen(c) TMAZ of RS of the HSNC specimen(d) NZ of the original specimen(e) NZ of the HSNC specimen
Fig.6  TEM images of the original and HSNC specimens (1—nanocrystalline, 2—submicron grain)(a) TMAZ of the original specimen(b) NZ of the original specimen(c) TMAZ of AS of the HSNC specimen(d) TMAZ of RS of the HSNC specimen(e) NZ of the HSNC specimen
Fig.7  Micro-hardness distributions of the FSW joints of 2A14 aluminum alloy
Fig.8  Fracture positions of FSW joints of the original (a) and HSNC (b) specimens
Sample Yield strength / MPa Ultimate strength / MPa Elongation / % Fracture position
Base metal 315 429 15.0
Original 210 362 7.8 TMAZ (AS)
HSNC 220 385 8.9 NZ
Table 1  Mechanical properties and fracture positions of FSW joints of the original and HSNC specimens
Fig.9  Low (a, c) and locally high (b, d) magnified fracture SEM images of FSW joints in the original (a, b) and HSNC (c, d) specimens
[1] Wang Y R, Teng W H, Yu Y, et al.Microstructure and characteristics of joint of electron beam welds of 2A14 aluminum alloy[J]. Chin. J. Nonferrous Met., 2012, 22: 3307
[1] (王亚荣, 滕文华, 余洋等. 电子束焊接2A14铝合金接头的组织与特征[J]. 中国有色金属学报, 2012, 22: 3307)
[2] Thomas W M, Nicholas E D, Needham J C, et al. Friction stir welding [P]. Great Britain Pat, 9125978.8, 1991
[3] Thomas W M, Nicholas E D, Needham J C, et al. Improvements relating to friction stir welding [P]. US Pat, 5460317, 1991
[4] Luan G H, North T H, Guo D L, et al.Characterizations of friction stir welding on aluminum alloy[J]. Trans. China Weld. Inst., 2002, 23(6): 62
[4] (栾国红, North T H, 郭德伦 等. 铝合金搅拌摩擦焊接头行为分析[J]. 焊接学报, 2002, 23(6): 62)
[5] Lu K, Lu J.Surface nanocrystallization (SNC) of metallic materials——Presentation of the concept behind a new approach[J]. J. Mater. Sci. Technol., 1999, 15: 193
[6] Lu L, Sui M L, Lu K.Superplastic extensibility of nanocrystalline copper at room temperature[J]. Science, 2000, 287: 1463
[7] Lu K, Lu J. Nanostructured surface layer on metallic materials induced by surface mechanical attrition treatment [J]. Mater. Sci. Eng., 2004, A375-377: 38
[8] Yang J H, Zhang Y X, Ge L L, et al.Effect of hybrid surface nanocrystallization on the electrochemical corrosion behavior in 2A14 aluminum alloy[J]. Acta Metall. Sin., 2016, 52: 1413
[8] (杨建海, 张玉祥, 葛利玲等. 2A14铝合金混合表面纳米化对电化学腐蚀行为的影响[J]. 金属学报, 2016, 52: 1413)
[9] Ge L L, Lu Z X, Jing X T, et al.Effect of surface nanocrystallization and thermal stability of 0Cr18Ni9 stainless steel on low temperature nitriding behavior[J]. Acta Metall. Sin., 2009, 45: 566
[9] (葛利玲, 卢正欣, 井晓天等. 0Cr18Ni9不锈钢表面纳米化组织及其热稳定性对低温渗氮行为的影响[J]. 金属学报, 2009, 45: 566)
[10] Xu W F, Liu J H, Luan G H, et al.Microstructures and mechanical properties of friction stir welded aluminium alloy thick plate[J]. Acta Metall. Sin., 2008, 44: 1404
[10] (徐韦锋, 刘金合, 栾国红等. 厚板铝合金搅拌摩擦焊接头显微组织与力学性能[J]. 金属学报, 2008, 44: 1404)
[11] Zhang H J, Wang M, Zhang X, et al.Characteristics and joint microstructure-property analysis of bobbin tool friction stir welding of 2A14-T6 aluminum alloy[J]. Trans. China Weld. Inst., 2015, 36(12): 65
[11] (张会杰, 王敏, 张骁等. 2A14-T6铝合金双轴肩搅拌摩擦焊特征及接头组织性能分析[J]. 焊接学报, 2015, 36(12): 65)
[12] Malarvizhi S, Balasubramanian V.Fatigue crack growth resistance of gas tungsten arc, electron beam and friction stir welded joints of AA2219 aluminium alloy[J]. Mater. Des., 2011, 32: 1205
[13] Liu H J, Zhang H J, Huang Y X, et al.Mechanical properties of underwater friction stir welded 2219 aluminum alloy[J]. Trans. Nonferrous Met. Soc. China, 2010, 20: 1387
[14] Zhang H J, Liu H J, Yu L.Microstructure and mechanical properties as a function of rotation speed in underwater friction stir welded aluminum alloy joints[J]. Mater. Des., 2011, 32: 4402
[15] Zhang H J, Liu H J, Yu L.Microstructural evolution and its effect on mechanical performance of joint in underwater friction stir welded 2219-T6 aluminium alloy[J]. Sci. Technol. Weld. Joining, 2011, 16: 459
[16] Zhang H J, Liu H J.Mathematical model and optimization for underwater friction stir welding of a heat-treatable aluminum alloy[J]. Mater. Des., 2013, 45: 206
[17] Kang J, Li J C, Feng Z C, et al.Investigation on mechanical and stress corrosion cracking properties of weakness zone in friction stir welded 2219-T8 Al alloy[J]. Acta Metall. Sin., 2016, 52: 60
[17] (康举, 李吉超, 冯志操等. 2219-T8铝合金搅拌摩擦焊接头力学和应力腐蚀性能薄弱区研究[J]. 金属学报, 2016, 52: 60)
[18] Wang D, Wang Q Z, Xiao B L, et al.Effect of heat treatment before welding on microstructure and mechanical properties of friction stir welded SiCp/Al-Cu-Mg composite joints[J]. Acta Metall. Sin., 2014, 50: 489
[18] (王东, 王全兆, 肖伯律等. 焊前热处理状态对SiCp/Al-Cu-Mg复合材料搅拌摩擦焊接头微观组织和力学性能的影响[J]. 金属学报, 2014, 50: 489)
[19] Bai T.Research on the stress corrosion cracking susceptibility of the stainless steel with surface nanocrystallization by small punch test [D]. Shanghai: East China University of Science and Technology, 2013
[19] (白涛. 不锈钢表面纳米化对应力腐蚀敏感性影响的小冲杆试验研究 [D]. 上海: 华东理工大学, 2013)
[20] Ji S D, Wen Q, Ma L, et al.Microstructure along thickness direction of friction stir welded TC4 titanium alloy joint[J]. Acta Metall. Sin., 2015, 51: 1391
[20] (姬书得, 温泉, 马琳等. TC4钛合金搅拌摩擦焊厚度方向的显微组织[J]. 金属学报, 2015, 51: 1391)
[21] Huang H W, Wang Z B, Liu L, et al.Formation of a gradient nanostructured surface layer on a martensitic stainless steel and its effects on the electrochemical corrosion behavior[J]. Acta Metall. Sin., 2015, 51: 513
[21] (黄海威, 王镇波, 刘莉等. 马氏体不锈钢上梯度纳米结构表层的形成及其对电化学腐蚀行为的影响[J]. 金属学报, 2015, 51: 513)
[22] Roland T, Retraint D, Lu K, et al. Enhanced mechanical behavior of a nanocrystallised stainless steel and its thermal stability [J]. Mater. Sci. Eng., 2007, A445-446: 281
[23] Liu J, Yang J H, Han F W, et al.Microstructures and properties of thickness aluminium alloy eleocellarium repairing welding joint by friction stir welding[J]. J. Mater. Eng., 2012, (7): 29
[23] (刘杰, 杨景宏, 韩凤武等. 厚板铝合金搅拌摩擦焊匙孔补焊接头组织与性能[J]. 材料工程, 2012, (7): 29)
[24] Nabarro F R N, Mura T. Dislocations in solids: Dislocations in metallurgy (Vol.4)[J]. J. Appl. Mech., 1981, 48: 451
[25] Shi H F, Ren X.Mechanical Properties of Materials [M]. Beijing: Peking University Press, 2010: 35
[25] (时海芳, 任鑫. 材料力学性能 [M]. 北京: 北京大学出版社, 2010: 35)
[1] ZHANG Leilei, CHEN Jingyang, TANG Xin, XIAO Chengbo, ZHANG Mingjun, YANG Qing. Evolution of Microstructures and Mechanical Properties of K439B Superalloy During Long-Term Aging at 800oC[J]. 金属学报, 2023, 59(9): 1253-1264.
[2] LU Nannan, GUO Yimo, YANG Shulin, LIANG Jingjing, ZHOU Yizhou, SUN Xiaofeng, LI Jinguo. Formation Mechanisms of Hot Cracks in Laser Additive Repairing Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1243-1252.
[3] ZHENG Liang, ZHANG Qiang, LI Zhou, ZHANG Guoqing. Effects of Oxygen Increasing/Decreasing Processes on Surface Characteristics of Superalloy Powders and Properties of Their Bulk Alloy Counterparts: Powders Storage and Degassing[J]. 金属学报, 2023, 59(9): 1265-1278.
[4] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[5] ZHANG Jian, WANG Li, XIE Guang, WANG Dong, SHEN Jian, LU Yuzhang, HUANG Yaqi, LI Yawei. Recent Progress in Research and Development of Nickel-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1109-1124.
[6] WANG Lei, LIU Mengya, LIU Yang, SONG Xiu, MENG Fanqiang. Research Progress on Surface Impact Strengthening Mechanisms and Application of Nickel-Based Superalloys[J]. 金属学报, 2023, 59(9): 1173-1189.
[7] CHEN Liqing, LI Xing, ZHAO Yang, WANG Shuai, FENG Yang. Overview of Research and Development of High-Manganese Damping Steel with Integrated Structure and Function[J]. 金属学报, 2023, 59(8): 1015-1026.
[8] LIU Xingjun, WEI Zhenbang, LU Yong, HAN Jiajia, SHI Rongpei, WANG Cuiping. Progress on the Diffusion Kinetics of Novel Co-based and Nb-Si-based Superalloys[J]. 金属学报, 2023, 59(8): 969-985.
[9] LI Jingren, XIE Dongsheng, ZHANG Dongdong, XIE Hongbo, PAN Hucheng, REN Yuping, QIN Gaowu. Microstructure Evolution Mechanism of New Low-Alloyed High-Strength Mg-0.2Ce-0.2Ca Alloy During Extrusion[J]. 金属学报, 2023, 59(8): 1087-1096.
[10] DING Hua, ZHANG Yu, CAI Minghui, TANG Zhengyou. Research Progress and Prospects of Austenite-Based Fe-Mn-Al-C Lightweight Steels[J]. 金属学报, 2023, 59(8): 1027-1041.
[11] YUAN Jianghuai, WANG Zhenyu, MA Guanshui, ZHOU Guangxue, CHENG Xiaoying, WANG Aiying. Effect of Phase-Structure Evolution on Mechanical Properties of Cr2AlC Coating[J]. 金属学报, 2023, 59(7): 961-968.
[12] WANG Zongpu, WANG Weiguo, Rohrer Gregory S, CHEN Song, HONG Lihua, LIN Yan, FENG Xiaozheng, REN Shuai, ZHOU Bangxin. {111}/{111} Near Singular Boundaries in an Al-Zn-Mg-Cu Alloy Recrystallized After Rolling at Different Temperatures[J]. 金属学报, 2023, 59(7): 947-960.
[13] SUN Rongrong, YAO Meiyi, WANG Haoyu, ZHANG Wenhuai, HU Lijuan, QIU Yunlong, LIN Xiaodong, XIE Yaoping, YANG Jian, DONG Jianxin, CHENG Guoguang. High-Temperature Steam Oxidation Behavior of Fe22Cr5Al3Mo-xY Alloy Under Simulated LOCA Condition[J]. 金属学报, 2023, 59(7): 915-925.
[14] ZHANG Deyin, HAO Xu, JIA Baorui, WU Haoyang, QIN Mingli, QU Xuanhui. Effects of Y2O3 Content on Properties of Fe-Y2O3 Nanocomposite Powders Synthesized by a Combustion-Based Route[J]. 金属学报, 2023, 59(6): 757-766.
[15] WU Dongjiang, LIU Dehua, ZHANG Ziao, ZHANG Yilun, NIU Fangyong, MA Guangyi. Microstructure and Mechanical Properties of 2024 Aluminum Alloy Prepared by Wire Arc Additive Manufacturing[J]. 金属学报, 2023, 59(6): 767-776.
No Suggested Reading articles found!