Please wait a minute...
Acta Metall Sin  2017, Vol. 53 Issue (1): 70-76    DOI: 10.11900/0412.1961.2016.00266
Orginal Article Current Issue | Archive | Adv Search |
Effect on Microstructure of Tungsten Under Helium Ions Irradiation with Multiple Energy
Kang WANG1,Aihong DENG1(),Min GONG1,Xiaobo LU1,Yuanyuan ZHANG1,Xiang LIU2
1 College of Physical Science and Technology, Sichuan University, Chengdu 610064, China
2 Southwestern Institute of Physics, Chengdu 610041, China
Cite this article: 

Kang WANG,Aihong DENG,Min GONG,Xiaobo LU,Yuanyuan ZHANG,Xiang LIU. Effect on Microstructure of Tungsten Under Helium Ions Irradiation with Multiple Energy. Acta Metall Sin, 2017, 53(1): 70-76.

Download:  HTML  PDF(2449KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Tungsten is considered as the most promising candidate for plasma-facing materials in future nuclear fusion reactors. The damage behaviors of tungsten under different He irradiation are one of the main issue of concerns. In this work, the evolution of helium-related defect in polycrystalline tungsten was studied by slow positron beam analysis (SPBA) and SEM as functions of annealing temperature and implantation fluence. The results show that the number of vacancy-type defect induced by the multi-energy He irradiation increases with the increment of irradiation fluence. At the meantime, annealing at the temperature of 220 ℃ induces the recombination of interstitial W atoms with vacancies, thus reduces the number of the vacancy-type defects in the sample. And annealing at 450 and 650 ℃ leads to the formation of He bubbles in the tungsten materials, and the size of He bubbles in tungsten is related to the annealing temperature, and the He bubbles and holes with a diameter of about 600 nm could be observed for the specimen annealing at 650 ℃.

Key words:  W      He      positron annihilation      vacancy-type defect     
Received:  29 June 2016     
Fund: Supported by National Natural Science Foundation of China (Nos.11275132 and 11675114)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2016.00266     OR     https://www.ams.org.cn/EN/Y2017/V53/I1/70

Sample 50 keV 35 keV 30 keV
1# 1.0 2.0 5.0
2# 1.5 3.0 7.5
3# 2.0 4.0 1.0
Table 1  The number of tungsten samples and the corresponding fluence of He+ irradiation

(1016 cm-2)

Fig.1  SRIM-2013 calculation results of the He+ implantation profiles (full symbols) in tungsten and the corresponding displacements profiles (open symbols)
Fig.2  S-E plots for the He+ implanted tungsten under different fluences (S—low momentum annihilation fractions,E—positron energy)
Fig.3  S-W plots for virgin W (a) and the He+ implanted tungsten samples of 1# (b), 2# (c) and 3# (d) (W—high momentum annihilation fraction)
Fig.4  Cross-sectional SEM images of 3# sample of virgin tungsten (a) and He+ implanted tungsten (b~e) without annealing (b), annealed at 220 ℃ (c), 450 ℃ (d) and 650 ℃ (e) (Circles in Figs.4b and c indicate the small white bubbles)
Fig.5  S-E plots for the He+ implanted tungsten annealed at different temperatures
Fig.6  S-W plots for virgin tungsten (a) and He+ implanted tungsten annealed at 220 ℃ (b), 450 ℃ (c) and 650 ℃ (d)
[1] Clark R E H, Reiter D H. Nuclear Fusion Research: Understanding Plasma-Surface Interactions[M]. Berlin: Springer, 2005: 3
[2] Hao J K.Fusion Reactor Material [M]. Beijing: Chemical Industry Press, 2007: 12
[2] (郝嘉琨. 聚变堆材料 [M]. 北京: 化学工业出版社, 2007: 12)
[3] Yuan B S, Jiang S F, Lu Z H.Device Foundation of Tokamak [M]. Beijing: Atomic Energy Press, 2011: 155
[3] (袁保山, 姜韶风, 陆志鸿. 托卡马克装置工程基础 [M]. 北京: 原子能出版社, 2011: 155)
[4] Federici G, Barabash V, Janeschitz G, et al.Selection of plasma-facing materials in next-step fusion devices [A]. 19th Symposium on Fusion Engineering[C]. Atlantic: IEEE, 2002: 311
[5] Bolt H, Barabash V, Federici G, et al. Plasma facing and high heat flux materials——needs for ITER and beyond [J]. J. Nucl. Mater., 2002, 307-311: 43
[6] Frauenfelder R.Solution and diffusion of hydrogen in tungsten[J]. J. Vac. Sci. Technol., 1969, 6: 388
[7] Federici G, Anderl R, Brooks J N, et al. Tritium inventory in the ITER PFC's: predictions, uncertainties, R&D status and priority needs [J]. Fusion Eng. Des., 1998, 39-40: 445
[8] Pitts R A, Carpentier S, Escourbiac F, et al.A full tungsten divertor for ITER: physics issues and design status[J]. J. Nucl. Mater., 2013, 438(suppl.): S48
[9] Wang F Z, Tang L X, Feng P F, et al.Tungsten Materials and Its Processing [M]. Beijing: Metallurgy Industry Press, 2008: 1
[9] (王发展, 唐丽霞, 冯鹏发等. 钨材料及其加工 [M]. 北京: 冶金工业出版社, 2008: 1)
[10] Ioki K, Barabash V, Cardella A, et al. Design and material selection for ITER first wall/blanket, divertor and vacuum vessel [J]. J. Nucl. Mater., 1998, 258-263: 74
[11] Barnes R S.Embrittlement of stainless steels and nickel-based alloys at high temperature induced by neutron radiation[J]. Nature, 1965, 206: 1307
[12] Lhuillier P E, Belhabib T, Desgardin P, et al.Helium retention and early stages of helium-vacancy complexes formation in low energy helium-implanted tungsten[J]. J. Nucl. Mater., 2013, 433: 305
[13] Woller K B, Whyte D G, Wright G M, et al.Helium concentration in tungsten nano-tendril surface morphology using Elastic Recoil Detection[J]. J. Nucl. Mater., 2013, 438(suppl.): S913
[14] Wiss T A G, Hiernaut J P, Damen P M G, et al. Helium behaviour in waste conditioning matrices during thermal annealing[J]. J. Nucl. Mater., 2006, 352: 202
[15] Debelle A, Barthe M F, Sauvage T, et al.Helium behaviour and vacancy defect distribution in helium implanted tungsten[J]. J. Nucl. Mater., 2007, 362: 181
[16] Debelle A, Barthe M F, Sauvage T.First temperature stage evolution of irradiation-induced defects in tungsten studied by positron annihilation spectroscopy[J]. J. Nucl. Mater., 2008, 376: 216
[17] Debelle A, Lhuillier P E, Barthe M F, et al.Helium desorption in 3He implanted tungsten at low fluence and low energy[J]. Nucl. Instr. Meth. Phys. Res., 2010, 268B: 223
[18] Iwakiri H, Yasunaga K, Morishita K, et al. Microstructure evolution in tungsten during low-energy helium ion irradiation [J]. J. Nucl. Mater., 2000, 283-287: 1134
[19] Iwakiri H, Morishita K, Yoshida N. Effects of helium bombardment on the deuterium behavior in tungsten [J]. J. Nucl. Mater., 2002, 307-311: 135
[20] Yoshida N, Iwakiri H, Tokunaga K, et al. Impact of low energy helium irradiation on plasma facing metals [J]. J. Nucl. Mater., 2005, 337-339: 946
[21] Watanabe Y, Iwakiri H, Yoshida N, et al.Formation of interstitial loops in tungsten under helium ion irradiation: rate theory modeling and experiment[J]. Nucl. Instr. Meth. Phys. Res., 2007, 255B: 32
[22] Henriksson K O E, Nordlund K, Krasheninnikov A, et al. The depths of hydrogen and helium bubbles in tungsten: a comparison[J]. Fusion Sci. Technol., 2006, 50: 43
[23] Wang S J, Chen Z Q, Wang B, et al.Applied Positron Spectroscopy [M]. Wuhan: Hubei Science and Technology Press, 2008: 39
[23] (王少阶, 陈志权, 王波等. 应用正电子谱学 [M]. 武汉: 湖北科学技术出版社, 2008: 39)
[24] Yu W Z.Positron Physics and Its Application [M]. Beijing: Science Press, 2002: 441
[24] (郁伟忠. 正电子物理及其应用 [M]. 北京: 科学出版社, 2002: 441)
[25] Van Veen A, Schut H, de Vries J, et al. Analysis of positron profiling data by means of "VEPFIT" [A]. 4th International Workshop on: Slow-Positron Beam Techniques for Solids and Surfaces[C]. Canada: AIP, 1990, 218: 171
[26] Ziegler J F, Ziegler M D, Biersack J P.SRIM——The stopping and range of ions in matter (2010)[J]. Nucl. Instr. Meth. Phys. Res., 2010, 268: 1818
[27] Yu J N.Material Radiation Effect [M]. Beijing: Chemical Industry Press, 2007: 154
[27] (郁金南. 材料辐照效应 [M]. 北京: 化学工业出版社, 2007: 154)
[28] Wang Q, Meng D Q, Liu K D, et al.Study of pure iron implanted by the multiple energy-carbon ion[J]. Mater. Prot., 2007, 40(5): 13
[28] (王茜, 蒙大桥, 刘柯钊等. 多能碳离子注入纯铁研究[J]. 材料保护, 2007, 40(5): 13)
[29] Mantl S, Triftshauser W.Defect annealing studies on metals by positron annihilation and electrical resitivity measurements[J]. J. Phys. Rev., 1978, 17B: 1645
[30] Clement M, De Nijs J M M, Balk P, et al. Analysis of positron beam data by the combined use of the shape- and wing-parameters[J]. J. Appl. Phys., 1996, 79: 9029
[31] Wang P X, Song J S.Material of Helium and Tritium Permeation [M]. Beijing: National Defence Industry Press, 2002: 16
[31] (王佩璇, 宋家树. 材料中的氦及氚渗透 [M]. 北京: 国防工业出版社, 2002: 16)
[32] Zhang L, Wang P X, Tao R, et al.Thermal nucleation and growth of He bubbles in He implanted stainless steels[J]. Acta Metall. Sin., 1992, 28: A521
[32] (张镭, 王佩璇, 陶蓉等. 注入氦不锈钢中氦泡热形核及长大研究[J]. 金属学报, 1992, 28: A521)
[33] Trinkaus H, Singh B N.Helium accumulation in metals during irradiation——where do we stand?[J]. J. Nucl. Mater., 2003, 323: 229
[34] Zhong Q P, Zhao Z H.The Fractography [M]. Beijing: Higher Education Press, 2006: 176
[34] (钟群鹏, 赵子华. 断口学[M]. 北京: 高等教育出版社, 2006: 176)
[1] FENG Qiang, LU Song, LI Wendao, ZHANG Xiaorui, LI Longfei, ZOU Min, ZHUANG Xiaoli. Recent Progress in Alloy Design and Creep Mechanism of γ'-Strengthened Co-Based Superalloys[J]. 金属学报, 2023, 59(9): 1125-1143.
[2] ZHENG Liang, ZHANG Qiang, LI Zhou, ZHANG Guoqing. Effects of Oxygen Increasing/Decreasing Processes on Surface Characteristics of Superalloy Powders and Properties of Their Bulk Alloy Counterparts: Powders Storage and Degassing[J]. 金属学报, 2023, 59(9): 1265-1278.
[3] ZHAO Peng, XIE Guang, DUAN Huichao, ZHANG Jian, DU Kui. Recrystallization During Thermo-Mechanical Fatigue of Two High-Generation Ni-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1221-1229.
[4] WANG Lei, LIU Mengya, LIU Yang, SONG Xiu, MENG Fanqiang. Research Progress on Surface Impact Strengthening Mechanisms and Application of Nickel-Based Superalloys[J]. 金属学报, 2023, 59(9): 1173-1189.
[5] DU Jinhui, BI Zhongnan, QU Jinglong. Recent Development of Triple Melt GH4169 Alloy[J]. 金属学报, 2023, 59(9): 1159-1172.
[6] BAI Jiaming, LIU Jiantao, JIA Jian, ZHANG Yiwen. Creep Properties and Solute Atomic Segregation of High-W and High-Ta Type Powder Metallurgy Superalloy[J]. 金属学报, 2023, 59(9): 1230-1242.
[7] CHEN Liqing, LI Xing, ZHAO Yang, WANG Shuai, FENG Yang. Overview of Research and Development of High-Manganese Damping Steel with Integrated Structure and Function[J]. 金属学报, 2023, 59(8): 1015-1026.
[8] MU Yahang, ZHANG Xue, CHEN Ziming, SUN Xiaofeng, LIANG Jingjing, LI Jinguo, ZHOU Yizhou. Modeling of Crack Susceptibility of Ni-Based Superalloy for Additive Manufacturing via Thermodynamic Calculation and Machine Learning[J]. 金属学报, 2023, 59(8): 1075-1086.
[9] LI Jingren, XIE Dongsheng, ZHANG Dongdong, XIE Hongbo, PAN Hucheng, REN Yuping, QIN Gaowu. Microstructure Evolution Mechanism of New Low-Alloyed High-Strength Mg-0.2Ce-0.2Ca Alloy During Extrusion[J]. 金属学报, 2023, 59(8): 1087-1096.
[10] DING Hua, ZHANG Yu, CAI Minghui, TANG Zhengyou. Research Progress and Prospects of Austenite-Based Fe-Mn-Al-C Lightweight Steels[J]. 金属学报, 2023, 59(8): 1027-1041.
[11] SI Yongli, XUE Jintao, WANG Xingfu, LIANG Juhua, SHI Zimu, HAN Fusheng. Effect of Cr Addition on the Corrosion Behavior of Twinning-Induced Plasticity Steel[J]. 金属学报, 2023, 59(7): 905-914.
[12] YUAN Jianghuai, WANG Zhenyu, MA Guanshui, ZHOU Guangxue, CHENG Xiaoying, WANG Aiying. Effect of Phase-Structure Evolution on Mechanical Properties of Cr2AlC Coating[J]. 金属学报, 2023, 59(7): 961-968.
[13] ZHANG Lu, YU Zhiwei, ZHANG Leicheng, JIANG Rong, SONG Yingdong. Thermo-Mechanical Fatigue Cycle Damage Mechanism and Numerical Simulation of GH4169 Superalloy[J]. 金属学报, 2023, 59(7): 871-883.
[14] LI Xiaohan, CAO Gongwang, GUO Mingxiao, PENG Yunchao, MA Kaijun, WANG Zhenyao. Initial Corrosion Behavior of Carbon Steel Q235, Pipeline Steel L415, and Pressure Vessel Steel 16MnNi Under High Humidity and High Irradiation Coastal-Industrial Atmosphere in Zhanjiang[J]. 金属学报, 2023, 59(7): 884-892.
[15] ZHAO Pingping, SONG Yingwei, DONG Kaihui, HAN En-Hou. Synergistic Effect Mechanism of Different Ions on the Electrochemical Corrosion Behavior of TC4 Titanium Alloy[J]. 金属学报, 2023, 59(7): 939-946.
No Suggested Reading articles found!