Please wait a minute...
Acta Metall Sin  2016, Vol. 52 Issue (12): 1557-1564    DOI: 10.11900/0412.1961.2016.00113
Orginal Article Current Issue | Archive | Adv Search |
CORROSION BEHAVIOR OF A NEW NICKEL BASE ALLOY IN SUPERCRITICAL WATERCONTAINING DIVERSE IONS
Meiqiong OU1,2,Yang LIU3,Xiangdong ZHA1,Yingche MA1,4(),Leming CHENG3,Kui LIU1
1 Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2 School of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, China
3 State Key Laboratory of Coal-Based Low Carbon Energy, ENN Science and Technology Development Co., Ltd. Langfang 065001, China
4 Jiangsu Toland Alloy Co., Danyang 212352, China
Cite this article: 

Meiqiong OU,Yang LIU,Xiangdong ZHA,Yingche MA,Leming CHENG,Kui LIU. CORROSION BEHAVIOR OF A NEW NICKEL BASE ALLOY IN SUPERCRITICAL WATERCONTAINING DIVERSE IONS. Acta Metall Sin, 2016, 52(12): 1557-1564.

Download:  HTML  PDF(4107KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The productivity of municipal sewage sludge is difficult to treat by traditional methods. Supercritical water oxidation (SCWO) is an attractive municipal sewage sludge treatment technology. However, the process of SCWO must be carried out in a reactor which will resist not only high temperature (above 374.15 ℃) and high pressure (above 22.1 MPa) conditions but also a corrosive environment. Thus, the material used in the equipment is referred to be a key factor that restricts the application of the SCWO technology. Many materials have been selected for corrosion test under corrosive environments with SCWO, including austenitic stainless steel, nickel base alloys, titanium alloys and zirconium alloys. At present, in order to treat rich phosphorous sewage sludge, a new corrosion resistant nickel base alloy X-1# alloy has been developed to apply to the reactor of SCWO process. X-1# alloy has excellent corrosion-resistance and oxidation-resistance properties in supercritical water containing PO43-, Cl- and SO42-. The corrosion behaviors of X-1# alloy exposed to 550 ℃, 23 MPa supercritical water containing PO43-, Cl- and SO42- were investigated in this research. The exposed time was 72, 159, 248, 429 and 537 h. Morphologies, microstructures and chemical composition of oxide films in X-1# alloy and deposit sediment in reaction were studied using grazing incidence XRD, XPS and SEM equipped with EDS. The XRD, EDS and XPS analysis of X-1# alloy was performed to identify the composition of oxide layers, which were identified as NiCr2O4, Cr2O3, NiO, Ni3(PO4)2, CrPO4 and Na3PO4. In addition, it was founded that continuous and uniform oxide films were formed in supercritical water. The oxide film was a duplex-layer structure, the loose outer layer was NiO, Ni(OH)2 and phosphates, including Ni3(PO4)2, CrPO4 and Na3PO4, while the compact inner layer consisted of NiCr2O4 and Cr2O3. X-1# alloy showed a high corrosion rate in the initial stage and the corrosion rate decreased obviously after exposed to 248 h, the reason of which was that the compact inner layer of oxide films had good stability and benefited to the corrosion behavior of X-1# alloy. In order to explain the corrosion behavior of X-1# alloy, the oxide films growth mechanical, metal ions and oxygen ions dissolution mechanism and phosphates precipitation mechanism will be discussed in this research.

Key words:  nickel base alloy,      supercritical water oxidation (SCWO),      oxide film,      phosphate     
Received:  01 April 2016     

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2016.00113     OR     https://www.ams.org.cn/EN/Y2016/V52/I12/1557

Fig.1  XRD spectrum of X-1# alloy exposed for 537 h
Fig.2  SEM images of surface oxide films of X-1# alloy exposed for 72 h (a), 159 h (b), 248 h (c), 429 h (d) and 537 h (e)
Product Mark O Ni Cr Fe P Na Ti Oxide
Fine particle A 25.77 33.47 13.11 15.26 1.27 1.83 1.15 NiCr2O4, Cr2O3
Loose particle B 27.56 26.95 1.83 1.95 17.44 16.51 0.29 Ni(OH)2, NiO, Na3PO4,
Ni3(PO4)2, CrPO4
Geometric square C 26.02 11.56 10.02 1.96 23.09 12.73 8.37 Ni(OH)2, NiO, Na3PO4,
Ni3(PO4)2, CrPO4
Table 1  EDS results of oxide film on X-1# alloy (mass fraction / %)
Fig.3  Surface SEM images of blocky, slice (a) and rod (b) deposit sediment in reactor
Product Mark O Ni Cr Fe P Na Mo Oxide
Blocky D 21.16 37.67 8.97 1.13 0.60 7.26 17.18 NiO, Ni(OH)2, NiCr2O4, Cr2O3, MoO2
Slice E 19.89 38.67 9.83 0.88 0.99 6.01 18.25 NiO, Ni(OH)2, NiCr2O4, Cr2O3, MoO2
Rod F 34.64 20.36 2.80 1.43 14.60 20.52 - Na3PO4, Ni3(PO4)2, CrPO4
Table 2  EDS results of deposit sediment in reactor (mass fraction / %)
Fig.4  XPS results of sediments on X-1# alloy in oxidizing supercritical water for 573 h at 550 ℃(a) Cr2p (b) Ni2p (c) Mo3d (d) Na1s (e) P2p
Fig.5  Cross-section SEM images of X-1# alloy exposed for 72 h (a), 159 h (b), 248 h (c), 429 h (d) and 537 h (e)
Fig.6  Cross-section composition distributions of X-1# alloy exposed for 159 h (a) and 248 h (b)
[1] Chen Z, Wang G W, Yin F J, Chen H Z, Xu Y J.Chem Eng J, 2015; 269: 343
[2] Kritzer P, Dinjus E.Chem Eng J, 2001; 83: 207
[3] Kritzer P.J Supercrit Fluids, 2004; 29: 1
[4] Zhang Q, Tang R, Yin K J, Luo X, Zhang L F.Corros Sci, 2009; 51: 2092
[5] Chang K H, Huang J H, Yan C B, Yeh T K, Chen F R, Kai J J.Prog Nucl Energy, 2012; 57: 20
[6] Tang X Y, Wang S Z, Qian L L, Li Y H, Lin Z H, Xu D H, Zhang Y P.Chem Eng Res Des, 2015; 100: 530
[7] Mitton D B, Orzalli J C, Latanision R M.ACS Symp Ser, 1995; 608: 327
[8] Kim H J, Mitton D B, Latanision R M.Corros Sci, 2010; 52: 801
[9] Marrone P A, Hong G T.J Supercrit Fluids, 2009; 51: 83
[10] Gao X, Wu X Q, Zhang Z E, Guan H, Han E H.J Supercrit Fluids, 2007; 42: 157
[11] Tan L, Ren X, Sridharan K, Allen T R.Corros Sci, 2008; 50: 3056
[12] Sun M C, Wu X Q, Zhang Z E, Han E H. J Supercrit Fluids, 2008; 47: 309
[13] Ma Y C, Zhao X J, Gao M, Liu K.J Mater Sci Technol, 2011; 27: 841
[14] Zhao X, Zha X D, Liu Y, Zhang L, Liang T, Ma Y C, Cheng L M.Acta Metall Sin, 2015; 51: 249
[14] (赵霞, 查向东, 刘扬, 张龙, 梁田, 马颖澈, 程乐明. 金属学报, 2015; 51: 249)
[15] Ren X, Sridharan K, Allen T R.Corrosion, 2007; 63: 603
[16] Terachi T, Totsuka N, Yamada T, Nakagawa T, Deguchi H, Horiuchi M, Oshitani M.J Nucl Sci Technol, 2003; 40: 509
[17] Chang K H, Chen S M, Yeh T K, Kai J J.Corros Sci, 2014; 81: 21
[18] Otsuka N, Fujikawa H.Corrosion, 1991; 47: 240
[19] Li H F, Fan H Y, Zhang Q, Qiu S Y, Wang J.Nucl Power Eng, 2011; 32(3): 38
[19] (李海丰, 范洪远, 张强, 邱绍宇, 王均. 核动力工程, 2011; 32(3): 38)
[20] Liu Z H, Fang L, Tao H C.J Northeast Agric Univ, 2012; 43: 108
[20] (刘振华, 方琳, 陶虎春. 东北农业大学学报, 2012; 43: 108)
[21] Zhu W, Xu Z R, Li L, He C.Chem Eng J, 2011; 171: 190
[22] Machet A, Galtayries A, Marcus P, Combrade P, Jolivet P, Scott P.Surf Interface Anal, 2002; 34: 197
[23] Biesinger M C, Brown C, Mycroft J R, Davidson R D, Mclntyre N S.Surf Interface Anal, 2004; 36: 1550
[24] Zhang L, Han E-H, Zhang Z E, Guan H, Ke W.Acta Metall Sin, 2003; 39: 649(张丽, 韩恩厚, 张召恩, 关辉, 柯伟. 金属学报, 2003; 39: 649)
[25] Xu D H, Wang S Z, Zhang F, Huang C B, Tang X Y, Guo Y.Chem Ind Eng Prog, 2014; 33: 1015(徐东海, 王树众, 张峰, 黄传宝, 唐兴颖, 郭洋. 化工进展, 2014; 33: 1015)
[26] Zhong X Y, Wu X Q, Han E-H.Acta Metall Sin, 2011; 47: 932
[26] (钟祥玉, 吴欣强, 韩恩厚. 金属学报, 2011; 47: 932)
[27] Ziemniak S E, Hanson M.Corros Sci, 2003; 45: 1595
[28] Tan L, Ren X, Sridharan K, Allen T R.Corros Sci, 2008; 50: 2040
[1] SI Yongli, XUE Jintao, WANG Xingfu, LIANG Juhua, SHI Zimu, HAN Fusheng. Effect of Cr Addition on the Corrosion Behavior of Twinning-Induced Plasticity Steel[J]. 金属学报, 2023, 59(7): 905-914.
[2] SHEN Zhao, WANG Zhipeng, HU Bo, LI Dejiang, ZENG Xiaoqin, DING Wenjiang. Research Progress on the Mechanisms Controlling High-Temperature Oxidation Resistance of Mg Alloys[J]. 金属学报, 2023, 59(3): 371-386.
[3] LIU Laidi, DING Biao, REN Weili, ZHONG Yunbo, WANG Hui, WANG Qiuliang. Multilayer Structure of DZ445 Ni-Based Superalloy Formed by Long Time Oxidation at High Temperature[J]. 金属学报, 2023, 59(3): 387-398.
[4] SUN Rongrong, YAO Meiyi, LIN Xiaodong, ZHANG Wenhuai, QIU Yunlong, HU Lijuan, XIE Yaoping, YANG Jian, DONG Jianxin, CHENG Guoguang. Effect of Ti on the Corrosion Behavior of Fe22Cr5Al3Mo Alloy in 500oC Superheated Steam[J]. 金属学报, 2022, 58(5): 610-622.
[5] LIN Xiaodong, MA Haibin, REN Qisen, SUN Rongrong, ZHANG Wenhuai, HU Lijuan, LIANG Xue, LI Yifeng, YAO Meiyi. Corrosion Behaviors of Fe13Cr5Al4Mo Alloy in High-Temperature High-Pressure Water Environments[J]. 金属学报, 2022, 58(12): 1611-1622.
[6] QIAN Yue,SUN Rongrong,ZHANG Wenhuai,YAO Meiyi,ZHANG Jinlong,ZHOU Bangxin,QIU Yunlong,YANG Jian,CHENG Guoguang,DONG Jianxin. Effect of Nb on Microstructure and Corrosion Resistance of Fe22Cr5Al3Mo Alloy[J]. 金属学报, 2020, 56(3): 321-332.
[7] HUA Hanyu,XIE Jun,SHU Delong,HOU Guichen,Naicheng SHENG,YU Jinjiang,CUI Chuanyong,SUN Xiaofeng,ZHOU Yizhou. Influence of W Content on the Microstructure of Nickel Base Superalloy with High W Content[J]. 金属学报, 2020, 56(2): 161-170.
[8] Xiaoyi ZHANG, Hailong SHANG, Bingyang MA, Rongbin LI, Geyang LI. Brazing of Coated Al Foil Filler to AlN Ceramic[J]. 金属学报, 2018, 54(4): 575-580.
[9] Zhongbo YANG,Wenjin ZHAO,Zhuqing CHENG,Jun QIU,Hai ZHANG,Hong ZHUO. Effect of Nb Content on the Corrosion Resistance of Zr-xNb-0.4Sn-0.3Fe Alloys[J]. 金属学报, 2017, 53(1): 47-56.
[10] Jiazhen WANG,Jianqiu WANG,En-Hou HAN. CORROSION BEHAVIOR OF ALLOY 800 IN NaOH AND ETA SOLUTIONS AT 300 ℃[J]. 金属学报, 2016, 52(5): 599-606.
[11] Jianqiu WANG, Fa HUANG, Wei KE. CORROSION BEHAVIORS OF INCONEL 690TT AND INCOLOY 800MA STEAM GENERATOR TUBES IN HIGH TEMPERATURE HIGH PRESSURE WATER[J]. 金属学报, 2016, 52(10): 1333-1344.
[12] ZHANG Zhiming, WANG Jianqiu, HAN En-Hou, KE Wei. ANALYSIS OF SURFACE OXIDE FILM FORMED ON ELETROPOLISHED ALLOY 690TT IN HIGH TEMPERATURE AND HIGH PRESSURE WATER WITH SEQUENTIALLY DISSOLVED HYDROGEN AND OXYGEN[J]. 金属学报, 2015, 51(1): 85-92.
[13] ZHANG Haixia, LI Zhongkui, ZHOU Lian, XU Bingshe, WANG Yongzhen. EFFECTS OF STRUCTURE AND INTERNAL STRESSES IN OXIDE FILMS ON CORROSION MECHANISM OF NEW ZIRCONIUM ALLOY[J]. 金属学报, 2014, 50(12): 1529-1537.
[14] LIU Xiahe, WU Xinqiang, HAN En-hou. EFFECTS OF TEMPERATURE ON LECTROCHEMICAL CORROSION OF DOMESTIC NUCLEAR-GRADE 316L STAINLESS STEEL IN Zn-INJECTED AQUEOUS ENVIRONMENT[J]. 金属学报, 2014, 50(1): 64-70.
[15] WEI Tianguo, LONG Chongsheng, MIAO Zhi, LIU Yunming,LUAN Baifeng. CORROSION BEHAVIOR OF Zr-0.4Fe-1.0Cr-x Mo ALLOYS IN 500℃ and 10.3 MPa STEAM[J]. 金属学报, 2013, 49(6): 717-724.
No Suggested Reading articles found!