1 School of Materials Science and Engineering, Central South University, Changsha 410083, China
2 Nonferrous Metal Oriented Advanced Structural Materials and Manufacturing Cooperative Innovation Center, Central South University, Changsha 410083, China
Cite this article:
Duxiu ZHANG, Yi LI, Youxiong YE, Yangzhi SHEN, Xuyue YANG. EFFECT OF MINOR Fe ADDITION ON MICROSTRUCTURE EVOLUTION OF ULTRAFINE GRAINED COLDROLLING Cu-30Zn-0.15Fe ALLOY SUBJECTED TO ISOTHERMAL ANNEALING. Acta Metall Sin, 2016, 52(3): 369-377.
Cu-Zn alloys are one of the most commercially important metallic materials because of their excellent physical and mechanical properties, ease of fabrication and low cost. Ultrafine grained (UFG) metallic materials intrigue great interest due to their high strength, and most UFG materials are produced by severe plastic deformation (SPD). However, utilizing SPD to produce UFG materials needs large strain. Moreover, most UFG alloys produced by SPD have limited thermal stability and ductility which restrict the application in practical production. In this work, a UFG Cu-30Zn-0.15Fe alloy with good comprehensive properties and high thermal stability was prepared. Effect of minor Fe addition on the microstructure evolution of UFG Cu-Zn-Fe alloy subjected to cold rolling and subsequent isothermal annealing at 573 K was investigated through OM, TEM and SEM/EBSD observations. The results show that second phase particles are introduced into Cu-Zn-Fe alloy with trace P element by Fe addition. The second phase particles are identified as hcp structured Fe2P phase with diameters ranging at 50~300 nm. The hardness-annealing time curves of Cu-30Zn and Cu-30Zn-0.15Fe alloys have three stages, corresponding respectively to recovery, recrystallization and recrystallized grains growth. It takes longer time for Cu-Zn-Fe alloy to get recrystallization started; after fully annealed, the hardness of Cu-Zn-Fe alloy is much higher, with 30 HV increment than that of Cu-Zn alloy. The UFG Cu-Zn-Fe alloy has highly stable average grain size of 1.3 μm during the process of annealing, which results from Fe2P particles suppressing the growth of recrystallized grains. The Fe2P particles retard grain boundary migration and dislocation movement, resulting in less mass fraction of Σ3 twin boundaries, lower increasing speed, higher dislocation density and local stored energy. The main strengthening mechanisms for present UFG Cu-Zn-Fe alloy are second phase strengthening, fine-grain strengthening and dislocation strengthening.
Fig.1 OM images of Cu-30Zn (a) and Cu-30Zn-0.15Fe (b) alloys, TEM image of Cu-30Zn-0.15Fe alloy (c) after hot rolling and SAED pattern of second phase particles (d) (Inset in Fig.1c shows the SAED pattern)
Fig.2 OM (a, b) and TEM (c, d) images of Cu-30Zn (a, c) and Cu-30Zn-0.15Fe (b, d) alloys after cold rolling (Regions marked by circles in Figs.2a and c indicate fine grains and sub-structures, respectively; inset in Fig.2d shows the enlarged view of the rectangle area)
Fig.3 Variation of Vickers hardness with annealing time for Cu-30Zn and Cu-30Zn-0.15Fe alloys
Fig.4 OM (a, b) and TEM (c, d) images of Cu-30Zn (a, c) and Cu-30Zn-0.15Fe (b, d) alloys after annealing at 573 K for 3 h
Fig.5 EBSD images of Cu-30Zn (a~c) and Cu-30Zn-0.15Fe (d~f) alloys after annealing at 573 K for 10 min (a, d), 0.5 h (b, e) and 3 h (c, f) (RD--rolling direction, TD--transverse direction, HAB--high angle boundary, LAB--low angle boundary, Σ3--twin boundary)
Fig6 Changes of area fraction of HABs, LABs and Σ3 twin boundaries (a) and average grain size (b) with annealing time for Cu-30Zn and Cu-30Zn-0.15Fe alloys after annealing at 573 K
Fig 7 Kernel average misorientation (KAM) maps of Cu-30Zn (a~c) and Cu-30Zn-0.15Fe (d~f) alloys after annealing at 573 K for 10 min (a, d), 0.5 h (b, e) and 3 h (c, f) ( q--Kernel misorientation)
Fig8 KAM distributions of Cu-30Zn (a) and Cu-30Zn-0.15Fe (b) alloys after annealing at 573 K for different times
[1]
Peter L V, Liao X Z, Zhao Y H, Zhu Y T, Maxim M Y, Enrique L J, Valiev R Z, Ringer S P.Nat Commun, 2010; 1: 63
[2]
Zhao Y H, Liao X Z, Jin Z, Valiev R Z, Zhu Y T.Acta Mater, 2004; 15: 4589
[3]
Valiev R Z, Enikeev N A, Murashkin M Y, Kazykhanov V U, Sauvage X.Scr Mater, 2010; 9: 949
[4]
Valiev R Z, Islamgaliev R K, Alexandrov I V.Prog Mater Sci, 2000; 45: 103
[5]
Humphreys F J, Hatherly M.Recrystallization and Related Annealing Phenomena. 2nd Ed., Oxford: Pergamon Press, 2004: 451
[6]
An X H, Lin Q Y, Wu S D, Zhang Z F, Figueiredo R B, Gao N, Langdon T G.Scr Mater, 2011; 64: 954
[7]
Wu S D, An X H, Han W Z, Qu S, Zhang Z F.Acta Metall Sin, 2010; 46: 257
[7]
(吴世丁, 安祥海, 韩卫忠, 屈伸, 张哲峰. 金属学报, 2010; 46: 257)
[8]
Gong Y L, Wen C E, Li Y C, Wu X X, Cheng L P, Han X C, Zhu X K.Mater Sci Eng, 2013; A569: 144
[9]
Zhao Y H, Liao X Z, Horita Z, Langdon T G, Zhu Y T.Mater Sci Eng, 2008; A493: 123
[10]
Jiang Q W, Liu Y, Wang Y, Chao Y S, Li X W.Acta Metall Sin, 2009; 45: 873
[10]
(姜庆伟, 刘印, 王尧, 晁月盛, 李小武. 金属学报, 2009; 45: 873)
[11]
Molodova X, Gottstein G, Winning M, Hellmig R J.Mater Sci Eng, 2007; A460: 204
[12]
Ye Y X, Yang X Y, Liu C Z, Shen Y Z, Zhang X K, Sakai T.Mater Sci Eng, 2014; A612: 246
[13]
Carlsson B, Gölin M, Rundqvist.J Solid State Chem, 1973; 1: 57
[14]
Bader M, Eldis G T, Warlimont H.Metall Trans, 1976; 2A: 249
[15]
Konkova T, Mironov S, Korznikov A, Myshlyaev M M, Semiatin S L.Mater Sci Eng, 2013; A585: 178
[16]
Mahajan S, Pande C S, Imam M M, Rath B.Acta Mater, 1997; 6: 2633
[17]
Wright S I, Nowell M M, David F P.Microsc Microanal, 2011; 3: 316
[18]
Takayama Y, Szpunar J A.Mater Trans, 2004; 7: 2316
[19]
Dong Q Y, Shen L N, Cao F, Jia Y L, Wang M P.Acta Metall Sin, 2014; 10: 1224
[19]
(董琦祎, 申镭诺, 曹峰, 贾延琳, 汪明朴. 金属学报, 2014; 10: 1224)
[20]
Correia J B, Davies H A, Sellars C M.Acta Mater, 1997; 45: 177
[21]
Wen H M, Topping T D, Dieter I, David S N, Enrique L J.Acta Mater, 2013; 61: 2769
[22]
Brown L M, Ham R K.Strengthening Methods in Crystals. London: Elsevier, 1971: 10
[23]
Balogh L, Ungar T, Zhao Y H, Zhu Y T, Horita Z J, Xu C, Langdon T G.Acta Mater, 2008; 56: 809
[24]
Chen X H, Lu L, Lu K.Scr Mater, 2011; 64: 311
[25]
Kamikawa N, Huang X X, Tsuji N, Hansen N.Acta Mater, 2009; 57: 4198