Please wait a minute...
Acta Metall Sin  2016, Vol. 52 Issue (3): 369-377    DOI: 10.11900/0412.1961.2015.00303
Orginal Article Current Issue | Archive | Adv Search |
EFFECT OF MINOR Fe ADDITION ON MICROSTRUCTURE EVOLUTION OF ULTRAFINE GRAINED COLDROLLING Cu-30Zn-0.15Fe ALLOY SUBJECTED TO ISOTHERMAL ANNEALING
Duxiu ZHANG1,Yi LI1,Youxiong YE1,Yangzhi SHEN1,Xuyue YANG1,2()
1 School of Materials Science and Engineering, Central South University, Changsha 410083, China
2 Nonferrous Metal Oriented Advanced Structural Materials and Manufacturing Cooperative Innovation Center, Central South University, Changsha 410083, China
Cite this article: 

Duxiu ZHANG, Yi LI, Youxiong YE, Yangzhi SHEN, Xuyue YANG. EFFECT OF MINOR Fe ADDITION ON MICROSTRUCTURE EVOLUTION OF ULTRAFINE GRAINED COLDROLLING Cu-30Zn-0.15Fe ALLOY SUBJECTED TO ISOTHERMAL ANNEALING. Acta Metall Sin, 2016, 52(3): 369-377.

Download:  HTML  PDF(10704KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Cu-Zn alloys are one of the most commercially important metallic materials because of their excellent physical and mechanical properties, ease of fabrication and low cost. Ultrafine grained (UFG) metallic materials intrigue great interest due to their high strength, and most UFG materials are produced by severe plastic deformation (SPD). However, utilizing SPD to produce UFG materials needs large strain. Moreover, most UFG alloys produced by SPD have limited thermal stability and ductility which restrict the application in practical production. In this work, a UFG Cu-30Zn-0.15Fe alloy with good comprehensive properties and high thermal stability was prepared. Effect of minor Fe addition on the microstructure evolution of UFG Cu-Zn-Fe alloy subjected to cold rolling and subsequent isothermal annealing at 573 K was investigated through OM, TEM and SEM/EBSD observations. The results show that second phase particles are introduced into Cu-Zn-Fe alloy with trace P element by Fe addition. The second phase particles are identified as hcp structured Fe2P phase with diameters ranging at 50~300 nm. The hardness-annealing time curves of Cu-30Zn and Cu-30Zn-0.15Fe alloys have three stages, corresponding respectively to recovery, recrystallization and recrystallized grains growth. It takes longer time for Cu-Zn-Fe alloy to get recrystallization started; after fully annealed, the hardness of Cu-Zn-Fe alloy is much higher, with 30 HV increment than that of Cu-Zn alloy. The UFG Cu-Zn-Fe alloy has highly stable average grain size of 1.3 μm during the process of annealing, which results from Fe2P particles suppressing the growth of recrystallized grains. The Fe2P particles retard grain boundary migration and dislocation movement, resulting in less mass fraction of Σ3 twin boundaries, lower increasing speed, higher dislocation density and local stored energy. The main strengthening mechanisms for present UFG Cu-Zn-Fe alloy are second phase strengthening, fine-grain strengthening and dislocation strengthening.

Key words:  Cu-30Zn-0.15Fe alloy      Fe2P      microstructure      annealing      recrystallization     
Received:  09 June 2015     
Fund: Supported by National Natural Science Foundation of China (No.51174234)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2015.00303     OR     https://www.ams.org.cn/EN/Y2016/V52/I3/369

Fig.1  OM images of Cu-30Zn (a) and Cu-30Zn-0.15Fe (b) alloys, TEM image of Cu-30Zn-0.15Fe alloy (c) after hot rolling and SAED pattern of second phase particles (d) (Inset in Fig.1c shows the SAED pattern)
Fig.2  OM (a, b) and TEM (c, d) images of Cu-30Zn (a, c) and Cu-30Zn-0.15Fe (b, d) alloys after cold rolling (Regions marked by circles in Figs.2a and c indicate fine grains and sub-structures, respectively; inset in Fig.2d shows the enlarged view of the rectangle area)
Fig.3  Variation of Vickers hardness with annealing time for Cu-30Zn and Cu-30Zn-0.15Fe alloys
Fig.4  OM (a, b) and TEM (c, d) images of Cu-30Zn (a, c) and Cu-30Zn-0.15Fe (b, d) alloys after annealing at 573 K for 3 h
Fig.5  EBSD images of Cu-30Zn (a~c) and Cu-30Zn-0.15Fe (d~f) alloys after annealing at 573 K for 10 min (a, d), 0.5 h (b, e) and 3 h (c, f) (RD--rolling direction, TD--transverse direction, HAB--high angle boundary, LAB--low angle boundary, Σ3--twin boundary)
Fig6  Changes of area fraction of HABs, LABs and Σ3 twin boundaries (a) and average grain size (b) with annealing time for Cu-30Zn and Cu-30Zn-0.15Fe alloys after annealing at 573 K
Fig 7  Kernel average misorientation (KAM) maps of Cu-30Zn (a~c) and Cu-30Zn-0.15Fe (d~f) alloys after annealing at 573 K for 10 min (a, d), 0.5 h (b, e) and 3 h (c, f) ( q--Kernel misorientation)
Fig8  KAM distributions of Cu-30Zn (a) and Cu-30Zn-0.15Fe (b) alloys after annealing at 573 K for different times
[1] Peter L V, Liao X Z, Zhao Y H, Zhu Y T, Maxim M Y, Enrique L J, Valiev R Z, Ringer S P.Nat Commun, 2010; 1: 63
[2] Zhao Y H, Liao X Z, Jin Z, Valiev R Z, Zhu Y T.Acta Mater, 2004; 15: 4589
[3] Valiev R Z, Enikeev N A, Murashkin M Y, Kazykhanov V U, Sauvage X.Scr Mater, 2010; 9: 949
[4] Valiev R Z, Islamgaliev R K, Alexandrov I V.Prog Mater Sci, 2000; 45: 103
[5] Humphreys F J, Hatherly M.Recrystallization and Related Annealing Phenomena. 2nd Ed., Oxford: Pergamon Press, 2004: 451
[6] An X H, Lin Q Y, Wu S D, Zhang Z F, Figueiredo R B, Gao N, Langdon T G.Scr Mater, 2011; 64: 954
[7] Wu S D, An X H, Han W Z, Qu S, Zhang Z F.Acta Metall Sin, 2010; 46: 257
[7] (吴世丁, 安祥海, 韩卫忠, 屈伸, 张哲峰. 金属学报, 2010; 46: 257)
[8] Gong Y L, Wen C E, Li Y C, Wu X X, Cheng L P, Han X C, Zhu X K.Mater Sci Eng, 2013; A569: 144
[9] Zhao Y H, Liao X Z, Horita Z, Langdon T G, Zhu Y T.Mater Sci Eng, 2008; A493: 123
[10] Jiang Q W, Liu Y, Wang Y, Chao Y S, Li X W.Acta Metall Sin, 2009; 45: 873
[10] (姜庆伟, 刘印, 王尧, 晁月盛, 李小武. 金属学报, 2009; 45: 873)
[11] Molodova X, Gottstein G, Winning M, Hellmig R J.Mater Sci Eng, 2007; A460: 204
[12] Ye Y X, Yang X Y, Liu C Z, Shen Y Z, Zhang X K, Sakai T.Mater Sci Eng, 2014; A612: 246
[13] Carlsson B, Gölin M, Rundqvist.J Solid State Chem, 1973; 1: 57
[14] Bader M, Eldis G T, Warlimont H.Metall Trans, 1976; 2A: 249
[15] Konkova T, Mironov S, Korznikov A, Myshlyaev M M, Semiatin S L.Mater Sci Eng, 2013; A585: 178
[16] Mahajan S, Pande C S, Imam M M, Rath B.Acta Mater, 1997; 6: 2633
[17] Wright S I, Nowell M M, David F P.Microsc Microanal, 2011; 3: 316
[18] Takayama Y, Szpunar J A.Mater Trans, 2004; 7: 2316
[19] Dong Q Y, Shen L N, Cao F, Jia Y L, Wang M P.Acta Metall Sin, 2014; 10: 1224
[19] (董琦祎, 申镭诺, 曹峰, 贾延琳, 汪明朴. 金属学报, 2014; 10: 1224)
[20] Correia J B, Davies H A, Sellars C M.Acta Mater, 1997; 45: 177
[21] Wen H M, Topping T D, Dieter I, David S N, Enrique L J.Acta Mater, 2013; 61: 2769
[22] Brown L M, Ham R K.Strengthening Methods in Crystals. London: Elsevier, 1971: 10
[23] Balogh L, Ungar T, Zhao Y H, Zhu Y T, Horita Z J, Xu C, Langdon T G.Acta Mater, 2008; 56: 809
[24] Chen X H, Lu L, Lu K.Scr Mater, 2011; 64: 311
[25] Kamikawa N, Huang X X, Tsuji N, Hansen N.Acta Mater, 2009; 57: 4198
[1] WANG Lei, LIU Mengya, LIU Yang, SONG Xiu, MENG Fanqiang. Research Progress on Surface Impact Strengthening Mechanisms and Application of Nickel-Based Superalloys[J]. 金属学报, 2023, 59(9): 1173-1189.
[2] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[3] ZHANG Leilei, CHEN Jingyang, TANG Xin, XIAO Chengbo, ZHANG Mingjun, YANG Qing. Evolution of Microstructures and Mechanical Properties of K439B Superalloy During Long-Term Aging at 800oC[J]. 金属学报, 2023, 59(9): 1253-1264.
[4] LU Nannan, GUO Yimo, YANG Shulin, LIANG Jingjing, ZHOU Yizhou, SUN Xiaofeng, LI Jinguo. Formation Mechanisms of Hot Cracks in Laser Additive Repairing Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1243-1252.
[5] ZHAO Peng, XIE Guang, DUAN Huichao, ZHANG Jian, DU Kui. Recrystallization During Thermo-Mechanical Fatigue of Two High-Generation Ni-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1221-1229.
[6] CHANG Songtao, ZHANG Fang, SHA Yuhui, ZUO Liang. Recrystallization Texture Competition Mediated by Segregation Element in Body-Centered Cubic Metals[J]. 金属学报, 2023, 59(8): 1065-1074.
[7] LIU Xingjun, WEI Zhenbang, LU Yong, HAN Jiajia, SHI Rongpei, WANG Cuiping. Progress on the Diffusion Kinetics of Novel Co-based and Nb-Si-based Superalloys[J]. 金属学报, 2023, 59(8): 969-985.
[8] LI Jingren, XIE Dongsheng, ZHANG Dongdong, XIE Hongbo, PAN Hucheng, REN Yuping, QIN Gaowu. Microstructure Evolution Mechanism of New Low-Alloyed High-Strength Mg-0.2Ce-0.2Ca Alloy During Extrusion[J]. 金属学报, 2023, 59(8): 1087-1096.
[9] CHEN Liqing, LI Xing, ZHAO Yang, WANG Shuai, FENG Yang. Overview of Research and Development of High-Manganese Damping Steel with Integrated Structure and Function[J]. 金属学报, 2023, 59(8): 1015-1026.
[10] SUN Rongrong, YAO Meiyi, WANG Haoyu, ZHANG Wenhuai, HU Lijuan, QIU Yunlong, LIN Xiaodong, XIE Yaoping, YANG Jian, DONG Jianxin, CHENG Guoguang. High-Temperature Steam Oxidation Behavior of Fe22Cr5Al3Mo-xY Alloy Under Simulated LOCA Condition[J]. 金属学报, 2023, 59(7): 915-925.
[11] LI Fulin, FU Rui, BAI Yunrui, MENG Lingchao, TAN Haibing, ZHONG Yan, TIAN Wei, DU Jinhui, TIAN Zhiling. Effects of Initial Grain Size and Strengthening Phase on Thermal Deformation and Recrystallization Behavior of GH4096 Superalloy[J]. 金属学报, 2023, 59(7): 855-870.
[12] GUO Fu, DU Yihui, JI Xiaoliang, WANG Yishu. Recent Progress on Thermo-Mechanical Reliability of Sn-Based Alloys and Composite Solder for Microelectronic Interconnection[J]. 金属学报, 2023, 59(6): 744-756.
[13] WU Dongjiang, LIU Dehua, ZHANG Ziao, ZHANG Yilun, NIU Fangyong, MA Guangyi. Microstructure and Mechanical Properties of 2024 Aluminum Alloy Prepared by Wire Arc Additive Manufacturing[J]. 金属学报, 2023, 59(6): 767-776.
[14] FENG Aihan, CHEN Qiang, WANG Jian, WANG Hao, QU Shoujiang, CHEN Daolun. Thermal Stability of Microstructures in Low-Density Ti2AlNb-Based Alloy Hot Rolled Plate[J]. 金属学报, 2023, 59(6): 777-786.
[15] ZHANG Deyin, HAO Xu, JIA Baorui, WU Haoyang, QIN Mingli, QU Xuanhui. Effects of Y2O3 Content on Properties of Fe-Y2O3 Nanocomposite Powders Synthesized by a Combustion-Based Route[J]. 金属学报, 2023, 59(6): 757-766.
No Suggested Reading articles found!