Please wait a minute...
Acta Metall Sin  2016, Vol. 52 Issue (2): 233-240    DOI: 10.11900/0412.1961.2015.00282
Orginal Article Current Issue | Archive | Adv Search |
SYNERGISTIC EFFECT OF CORROSION AND CAVITATION EROSION OF HIGH NITROGEN STAINLESS STEEL
Yanxin QIAO1(),Shuo WANG1,Bin Liu1,Yugui ZHENG2,Huabing LI3,Zhouhua JIANG3
1 Jiangsu University of Science and Technology, Zhenjiang 212003, China
2 Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
3 School of Metallurgy, Northeastern University, Shenyang 110819, China
Cite this article: 

Yanxin QIAO,Shuo WANG,Bin Liu,Yugui ZHENG,Huabing LI,Zhouhua JIANG. SYNERGISTIC EFFECT OF CORROSION AND CAVITATION EROSION OF HIGH NITROGEN STAINLESS STEEL. Acta Metall Sin, 2016, 52(2): 233-240.

Download:  HTML  PDF(10022KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The cavitation erosion (CE) is a serious problem in engineering components in contact with a liquid in which the pressure fluctuates. The CE resistance of material is related to the microstructure, hardness, work hardening ability, superelasticity and superplasticity, or strain or stress induced phase transformation of material. The high nitrogen stainless steel (HNSS) is attractive for its low cost in application where a combination of good strength and toughness, high work hardening capacity, and corrosion resistance is required. These attractive properties cause the nitrogen alloyed stainless steels to be the good candidates with relatively high CE resistance. In this work, the CE behavior of HNSS in distilled water, 0.5 mol/L NaCl and 0.5 mol/L HCl solutions was investigated on the base of mass loss and polarization curve. The micrographs of damaged surface were observed by using SEM. The results showed that the cumulative mass loss of HNSS after subject to CE for 8 h was the highest in 0.5 mol/L HCl solution and lowest in distilled water. There existed an incubation period in mass loss rate curve and the incubation period shorted with the increase of the corrosive of tested solution. The plastic fracture was the dominant damage mode of HNSS subject to CE condition. The plastic deformation and dislocation motion of HNSS were facilitated by diffusion of hydrogen in HCl solution, therefore the initiation and propagation of crack were accelerated and removal of materials was accelerated by propagation and connection of cracks.

Key words:  high nitrogen stainless steel      corrosion      cavitation erosion      synergistic effect     
Received:  27 May 2015     
Fund: Supported by National Natural Science Foundation of China (Nos.51401092, 51305172, 51131008, 51434004, U1435205 and 51304041)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2015.00282     OR     https://www.ams.org.cn/EN/Y2016/V52/I2/233

Fig.1  Schematic a magnetostrictive-induced cavitation facility with electrochemical test system (1: computer, 2: Zahner electrochemical system, 3: water inlet, 4: cooling bath, 5: reference electrode, 6: sound-proof enclosure, 7: transducer, 8: horn, 9: counter electrode, 10: horn tip or specimen for mass loss test, 11: working electrode, 12: water outlet, 13: ultrasonic generator)
Fig.2  Microstructure of high nitrogen stainless steel (HNSS)
Fig.3  Mass loss (a) and mass loss rate (b) curves of HNSS in tested solutions
Fig.4  Potentiodynamic polarization curves for HNSS in 0.5 mol/L NaCl and 0.5 mol/L HCl solutions under static and cavitating conditions
Fig.5  SEM images of HNSS after cavitation erosion (CE) in distilled water (DW) for 1 h (a), 3 h (b), 5 h (c) and 8 h (d)
Fig.6  SEM images of HNSS after CE in 0.5 mol/L NaCl solution for 1 h (a), 3 h (b), 5 h (c) and 8 h (d)
Fig.7  SEM images of HNSS after CE in 0.5 mol/L HCl solution for 1 h (a), 3 h (b), 5 h (c) and 8 h (d)
Fig.8  Cross section morphologies of HNSS after CE in DW (a), 0.5 mol/L NaCl (b) and 0.5 mol/L HCl (c) solutions for 8 h
Solution Mass loss / mg Damage fraction / %
WT WC WE WEIC WCIE fC fE fEIC fCIE
NaCl 6.55 0.01 5.35 0.67 0.52 0.15 81.68 10.22 7.95
HCl 7.90 0.05 5.35 1.45 1.05 0.63 67.71 18.35 13.31
Table 1  Mass loss induced by pure corrosion (WC), pure erosion (WE), erosion-induced corrosion (WEIC) and corrosion-induced erosion (WCIE) and ratios of each factor for HNSS in NaCl and HCl solutions
Fig.9  Schematic showing CE mechanism of HNSS ( O—center of grain, OP, PN and PM—slip systems, θ, φ—angle between two slip directions, n1—number of dislocations, τ—critical resolved shear stress, ⊥—dislocation, M n+ —dissolution of metal as cation)
[1] Yu H.PhD Dissertation, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 2007
[1] (于宏. 中国科学院金属研究所博士学位论文, 沈阳, 2007)
[2] Luo S Z, Zheng Y G, Li M C, Yao Z M, Ke W.Corrosion, 2003; 59: 597
[3] Tomlinson W J, Talks M G.Tribol Int, 1991; 24: 67
[4] Bregliozzia G, Di-Schino A, Ahmed S I U, Kenny J M, Haefke H.Wear, 2005; 258: 503
[5] Kwok C T, Man H C, Leung L K.Wear, 1997; 211: 84
[6] Ogino K, Hida A, Kishima S.Corrosion, 1988; 44: 97
[7] Fu W T, Zheng Y Z, Jing T F, Yao M.Wear, 1997; 205: 28
[8] Fu W T, Zheng Y Z, Jing T F, Yao M. Wear, 2001; 249: 788
[9] Mills D J, Knutsen R D.Wear, 1998; 215: 83
[10] Liu W.PhD Dissertation, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 2001
[10] (柳伟. 中国科学院金属研究所博士学位论文, 沈阳, 2001)
[11] Luo S Z.PhD Dissertation, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 2003
[11] (骆素珍. 中国科学院金属研究所博士学位论文, 沈阳, 2003)
[12] Zheng Y G, Luo S Z, Ke W.Tribol Int, 2008; 41: 1181
[13] Qiao Y X, Zheng Y G, Wu X Q, Ke W, Yang K, Jiang Z H.Tribol Mater Surf Int, 2007; 1: 165
[14] Hoeppner D W, Goss G L.Wear, 1974; 27: 61
[15] Zheng Y G, Luo S Z, Ke W.Wear, 2007; 262: 1308
[16] Luo S Z, Zheng Y G, Liu W, Jing H M, Yao Z M, Ke W. J Mater Sci Technol, 2003; 19: 346
[17] Al-Hashem A, Caceres P G, Abdullah A, Shalaby H M.Corrosion, 1997; 52: 103
[18] Liu W, Zheng Y G, Liu C S, Yao Z M, Ke W.Wear, 2003; 254: 713
[19] Mesa D H, Garzón C M, Tschiptschin A P.Wear, 2011; 271: 1372
[20] Santos J F, Garzón C M, Tschiptschin A P.Mater Sci Eng, 2004; A382: 378
[21] Kwok C T, Man H C, Cheng F T.Mater Sci Eng, 1998; A242: 108
[22] Engelberg G, Yahalom J.Corros Sci, 1972; 12: 469
[23] Zheng Y G, Yao Z M, Zhang Y S, Wei X Y, Ke W.Acta Metall Sin, 2000; 36: 51
[23] (郑玉贵, 姚治铭, 张玉生, 魏翔云, 柯伟. 金属学报, 2000: 36: 51)
[24] Kwok C T, Cheng F T, Man H C.Mater Sci Eng, 2000; A290: 145
[25] Zheng Y G, Yao Z M, Wei X Y, Ke W. Wear, 1995; 186-187: 555
[26] Feng D.Physics of Metals. Beijing: Science Press, 1999: 1
[26] (冯端. 金属物理. 北京:科学出版社, 1999: 1)
[27] Qiao L J, Chu W Y, Mao X.Corrosion, 1996; 52: 275
[28] Chu W, Liu T, Hsiao C, Li S. Corrosion, 1981; 37: 320
[1] SI Yongli, XUE Jintao, WANG Xingfu, LIANG Juhua, SHI Zimu, HAN Fusheng. Effect of Cr Addition on the Corrosion Behavior of Twinning-Induced Plasticity Steel[J]. 金属学报, 2023, 59(7): 905-914.
[2] WANG Zongpu, WANG Weiguo, Rohrer Gregory S, CHEN Song, HONG Lihua, LIN Yan, FENG Xiaozheng, REN Shuai, ZHOU Bangxin. {111}/{111} Near Singular Boundaries in an Al-Zn-Mg-Cu Alloy Recrystallized After Rolling at Different Temperatures[J]. 金属学报, 2023, 59(7): 947-960.
[3] LI Xiaohan, CAO Gongwang, GUO Mingxiao, PENG Yunchao, MA Kaijun, WANG Zhenyao. Initial Corrosion Behavior of Carbon Steel Q235, Pipeline Steel L415, and Pressure Vessel Steel 16MnNi Under High Humidity and High Irradiation Coastal-Industrial Atmosphere in Zhanjiang[J]. 金属学报, 2023, 59(7): 884-892.
[4] CHEN Runnong, LI Zhaodong, CAO Yanguang, ZHANG Qifu, LI Xiaogang. Initial Corrosion Behavior and Local Corrosion Origin of 9%Cr Alloy Steel in ClContaining Environment[J]. 金属学报, 2023, 59(7): 926-938.
[5] ZHANG Qiliang, WANG Yuchao, LI Guangda, LI Xianjun, HUANG Yi, XU Yunze. Erosion-Corrosion Performance of EH36 Steel Under Sand Impacts of Different Particle Sizes[J]. 金属学报, 2023, 59(7): 893-904.
[6] ZHAO Pingping, SONG Yingwei, DONG Kaihui, HAN En-Hou. Synergistic Effect Mechanism of Different Ions on the Electrochemical Corrosion Behavior of TC4 Titanium Alloy[J]. 金属学报, 2023, 59(7): 939-946.
[7] WU Xinqiang, RONG Lijian, TAN Jibo, CHEN Shenghu, HU Xiaofeng, ZHANG Yangpeng, ZHANG Ziyu. Research Advance on Liquid Lead-Bismuth Eutectic Corrosion Resistant Si Enhanced Ferritic/Martensitic and Austenitic Stainless Steels[J]. 金属学报, 2023, 59(4): 502-512.
[8] XU Linjie, LIU Hui, REN Ling, YANG Ke. Effect of Cu on In-Stent Restenosis and Corrosion Resistance of Ni-Ti Alloy[J]. 金属学报, 2023, 59(4): 577-584.
[9] WANG Jingyang, SUN Luchao, LUO Yixiu, TIAN Zhilin, REN Xiaomin, ZHANG Jie. Rare Earth Silicate Environmental Barrier Coating Material: High-Entropy Design and Resistance to CMAS Corrosion[J]. 金属学报, 2023, 59(4): 523-536.
[10] HAN En-Hou, WANG Jianqiu. Effect of Surface State on Corrosion and Stress Corrosion for Nuclear Materials[J]. 金属学报, 2023, 59(4): 513-522.
[11] XIA Dahai, JI Yuanyuan, MAO Yingchang, DENG Chengman, ZHU Yu, HU Wenbin. Localized Corrosion Mechanism of 2024 Aluminum Alloy in a Simulated Dynamic Seawater/Air Interface[J]. 金属学报, 2023, 59(2): 297-308.
[12] LIAO Jingjing, ZHANG Wei, ZHANG Junsong, WU Jun, YANG Zhongbo, PENG Qian, QIU Shaoyu. Periodic Densification-Transition Behavior of Zr-Sn-Nb-Fe-V Alloys During Uniform Corrosion in Superheated Steam[J]. 金属学报, 2023, 59(2): 289-296.
[13] CHANG Litao. Corrosion and Stress Corrosion Crack Initiation in the Machined Surfaces of Austenitic Stainless Steels in Pressurized Water Reactor Primary Water: Research Progress and Perspective[J]. 金属学报, 2023, 59(2): 191-204.
[14] HU Wenbin, ZHANG Xiaowen, SONG Longfei, LIAO Bokai, WAN Shan, KANG Lei, GUO Xingpeng. Corrosion Behavior of AlCoCrFeNi2.1 Eutectic High-Entropy Alloy in Sulfuric Acid Solution[J]. 金属学报, 2023, 59(12): 1644-1654.
[15] SONG Jialiang, JIANG Zixue, YI Pan, CHEN Junhang, LI Zhaoliang, LUO Hong, DONG Chaofang, XIAO Kui. Corrosion Behavior and Product Evolution of Steel for High-Speed Railway Bogie G390NH in Simulated Marine and Industrial Atmospheric Environment[J]. 金属学报, 2023, 59(11): 1487-1498.
No Suggested Reading articles found!