Please wait a minute...
Acta Metall Sin  2014, Vol. 50 Issue (6): 722-726    DOI: 10.3724/SP.J.1037.2013.00782
Current Issue | Archive | Adv Search |
THE STRESS-STRAIN RELATIONSHIP OF TSV-Cu DETERMINED BY NANOINDENTATION
QIN Fei, XIANG Min, WU Wei
College of Mechanical Engineering and Applied Electronics Technology, Beijing University of Technology, Beijing 100124
Cite this article: 

QIN Fei, XIANG Min, WU Wei. THE STRESS-STRAIN RELATIONSHIP OF TSV-Cu DETERMINED BY NANOINDENTATION. Acta Metall Sin, 2014, 50(6): 722-726.

Download:  HTML  PDF(1495KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

In 3D electronic package technologies, through silicon via (TSV) plays a critical important role. TSVs are usually fully filled by electroplating copper, namely TSV-Cu, which has very different mechanical properties from bulk copper. To obtain the mechanical properties of the TSV-Cu, the Berkovich nanoindentation tests were conducted, and the Oliver-Pharr algorithm and the continuous stiffness measurement method were used to acquire the elastic modulus and hardness. Then finite element modeling (FEM) simulations are adopted for reverse analysis of the nanoindentation loading process to determine the representative stress and strain of the TSV-Cu by comparing the maximum value of simulated load to that of experimental load. The strain hardening exponent of the TSV-Cu is determined by dimension functions. The yield strength of the TSV-Cu is acquired by substituting the representative stress, the representative strain and the strain hardening exponent into a power law stress-strain constitution. Finally, a power law elastic-plastic stress-strain relationship of TSV-Cu is built. The obtained elastic modulus and hardness of the TSV-Cu are 155.47 GPa and 2.47 GPa, respectively; the strain hardening exponent is 0.4892 and the yield strength is 47.91 MPa.

Key words:  TSV-Cu      nanoindentation      elastic modulus      yield strength      strain hardening exponent     
Received:  03 December 2013     
ZTFLH:  TG425.1  
Fund: Supported by National Natural Science Foundation of China (No.11272018)

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2013.00782     OR     https://www.ams.org.cn/EN/Y2014/V50/I6/722

Fig.1  Schematic of through silicon via (TSV) structure
Fig.2  Axisymmetric finite element model of TSV-Cu
Sample E/GPa H/GPa
1 152.08 2.69
2 158.56 2.28
3 154.42 2.45
4 158.73 2.35
5 159.01 2.58
6 155.71 2.65
7 154.72 2.41
8 150.55 2.31
Average 155.47 2.47
Table 1  Elastic modulus E and hardness H of TSV-Cu
Sample Indentation test Current reverse algorithm
Wp/Wt ht/hm Error
hr/hm
%
σr
MPa
Error (σr)
%
n Error
(n)
%
εr Error (εr)
%
σy
MPa
Error (σy)
%
1 0.91284 0.93496 -0.142 491 0.204 0.4951 1.206 0.0364 -0.274 45.28 -5.49
2 0.92460 0.94345 0.765 452 -7.755 0.4182 -14.513 0.0373 2.192 70.60 47.36
3 0.91580 0.93709 0.085 487 -0.612 0.4625 -5.458 0.0370 1.370 58.00 21.06
4 0.91779 0.93853 0.239 483 -1.429 0.4817 -1.533 0.0370 1.370 47.04 -1.82
5 0.90925 0.93236 -0.420 522 6.531 0.5372 9.812 0.0353 -3.288 32.99 -31.14
6 0.91182 0.934221 -0.221 516 5.306 0.4552 -6.950 0.0374 2.466 67.46 40.81
7 0.91611 0.93732 0.110 474 -3.265 0.5249 7.298 0.0357 -2.192 31.25 -34.77
8 0.90932 0.93241 -0.414 497 1.429 0.5388 10.139 0.0356 -2.466 30.68 -35.96
Aver. 0.91469 0.93629 0.0003 490 0.0511 0.4892 0.0001 0.0365 -0.1028 47.91 0.0063
Table 2  Results of reverse analysis
Fig.3  A typical load- displacement curve ( We — elastic work during unloading, Fmax — maximum indentation load)
Fig.4  Stress-strain curve for TSV-Cu (σ= σ y ( 1 +E σ y ε p ) n , E=155470 MPa, σy=47.91 MPa, n=0.4892)
[1] Qin F, Wang J, Wan L X, Yu D Q, Cao L Q, Zhu W H. Semicond Technol, 2012; 37: 825
(秦飞, 王珺, 万里兮, 于大全, 曹立强, 朱文辉. 半导体技术, 2012; 37: 825)
[2] Wu B, Kumar A, Pamarthy S. J Appl Phys, 2010; 108: 051101
[3] Ege E S, Shen Y L. J Electron Mater, 2003; 32: 1000
[4] Shen Y L, Ramamurty U. J Appl Phys, 2003; 93: 1806
[5] Okoro C, Vanstreels K, Labie R, Lühn O, Vandevelde B, Verlinden B, Vandepitte D. J Micromech Microeng, 2010; 20: 045032
[6] Xu L, Dixit P, Miao J, Pang J H L, Zhang X, Tu K N, Preisser R. Appl Phys Lett, 2007; 90: 033111
[7] Dixit P, Xu L, Miao J, Pang J H L, Preisser R. J Micromech Microeng, 2007; 17: 1749
[8] Li J Y, Wang H, Wang S, Wang H Y, Cheng P, Zhang Z J, Ding G F. J Fudan Univ (Nat Sci), 2012; 51: 184
(李君翊, 汪红, 王溯, 王慧颖, 程萍, 张振杰, 丁桂甫. 复旦学报(自然科学版), 2012; 51: 184)
[9] Li Y S, Wang W. Acta Metall Sin, 2010; 46: 1098
(黎业生, 汪伟. 金属学报, 2010; 46: 1098)
[10] Wang F J, Qian Y Y, Ma X. Acta Metall Sin, 2005; 41: 775
(王凤江, 钱乙余, 马鑫. 金属学报, 2005; 41: 775)
[11] Ma Y, Yao X H, Tian L H, Zhang X Y, Shu X F, Tang B. Acta Metall Sin, 2011; 47: 321
(马 永, 姚晓红, 田林海, 张翔宇, 树学峰, 唐宾. 金属学报, 2011; 47: 321)
[12] Dao M, Chollacoop N, Van Vliet K J, Venkatesh T A, Suresh S. Acta Mater, 2001; 49: 3899
[13] Tabor D. The Hardness of Metals. London: Oxford University Press, 1951: 120
[14] Choi Y, Lee H S, Kwon D. J Mater Res, 2004; 19: 3307
[15] Pethica J B, Oliver W C. Phys Scr, 1987; 19: 61
[16] Oliver W C, Pharr G M. J Mater Res, 1992; 7: 64
[17] Pharr G M, Oliver W C. J Mater Res, 1992; 7: 613
[18] Antunes J M, Fernandes J V, Menezes L F, Chaparro B M. Acta Mater, 2007; 55: 69
[19] Lee J, Lee C, Kim B. Mater Des, 2009; 30: 3395
[20] Read D T, Cheng Y W, Geiss R. Microelectron Eng, 2004; 75: 63
[21] Xiang Y, Chen X, Vlassak J J. Mater Res Soc Symp Proc, 2002; 695: 189
[22]
[23] Ranganathan N, Prasad K, Balasubramanian N, Pey K L. J Micromech Microeng, 2008; 18: 075018
[24] Shin H A S, Kim B J, Kim J H, Hwang S H, Budiman A S, Son H Y, Byun K Y, Tamura N, Kunz M, Kim D I K, Joo Y C. J Electron Mater, 2012; 41: 712
[25] Okoro C, Labie R, Vanstreels K, Franquet A, Gonzalez M, Vandevelde B, Beyne E,Vandepitte D, Verlinden B. J Mater Sci, 2011; 46: 3868
[1] SHEN Guohui, HU Bin, YANG Zhanbing, LUO Haiwen. Influence of Tempering Temperature on Mechanical Properties and Microstructures of High-Al-Contained Medium Mn Steel Having δ-Ferrite[J]. 金属学报, 2022, 58(2): 165-174.
[2] ZHU Bin, YANG Lan, LIU Yong, ZHANG Yisheng. Micromechanical Properties of Duplex Microstructure of Martensite/Bainite in Hot Stamping via the Reverse Algorithms in Instrumented Sharp Indentation[J]. 金属学报, 2022, 58(2): 155-164.
[3] LAN Liangyun, KONG Xiangwei, QIU Chunlin, DU Linxiu. A Review of Recent Advance on Hydrogen Embrittlement Phenomenon Based on Multiscale Mechanical Experiments[J]. 金属学报, 2021, 57(7): 845-859.
[4] SUN Xiaojun, HE Jie, CHEN Bin, ZHAO Jiuzhou, JIANG Hongxiang, ZHANG Lili, HAO Hongri. Effect of Fe Content on the Microstructure, Electrical Resistivity, and Nanoindentation Behavior of Zr60Cu40-xFex Phase-Separated Metallic Glasses[J]. 金属学报, 2021, 57(5): 675-683.
[5] WANG Mingkang, YUAN Junhao, LIU Yufeng, WANG Qing, DONG Chuang, ZHANG Zhongwei. Effect of Ti on β Structural Stability and Mechanical Properties of Zr-Nb Binary Alloys[J]. 金属学报, 2021, 57(1): 95-102.
[6] LIU Jizhao, HUANG Hefei, ZHU Zhenbo, LIU Awen, LI Yan. Numerical Simulation of Nanohardness in Hastelloy N Alloy After Xenon Ion Irradiation[J]. 金属学报, 2020, 56(5): 753-759.
[7] Sensen HUANG,Yingjie MA,Shilin ZHANG,Min QI,Jiafeng LEI,Yaping ZONG,Rui YANG. Influence of Alloying Elements Partitioning Behaviors on the Microstructure and Mechanical Propertiesin α+β Titanium Alloy[J]. 金属学报, 2019, 55(6): 741-750.
[8] Pengyue ZHAO, Yongbo GUO, Qingshun BAI, Feihu ZHANG. Research of Surface Defects of Polycrystalline Copper Nanoindentation Based on Microstructures[J]. 金属学报, 2018, 54(7): 1051-1058.
[9] Hongyang XU,Haibo KE,Huogen HUANG,Pei ZHANG,Pengguo ZHANG,Tianwei LIU. Nanoindentation Creep Behavior of U65Fe30Al5 Amorphous Alloy[J]. 金属学报, 2017, 53(7): 817-823.
[10] Jihou LIU,Hongyun ZHAO,Zhuolin LI,Xiaoguo SONG,Hongjie DONG,Yixuan ZHAO,Jicai FENG. Microstructures and Mechanical Properties of Cu/Sn/Cu Structure Ultrasonic-TLP Joint[J]. 金属学报, 2017, 53(2): 227-232.
[11] Rui XIE,Zheng LU,Chenyang LU,Zhengyuan LI,Xueyong DING,Chunming LIU. CHARACTERIZATION OF NANOSIZED PRECIPITATES IN 9Cr-ODS STEELS BY SAXS AND TEM[J]. 金属学报, 2016, 52(9): 1053-1062.
[12] Rui CHEN,Qingyan XU,Baicheng LIU. MODELLING INVESTIGATION OF PRECIPITATION KINETICS AND STRENGTHENING FOR NEEDLE/ROD-SHAPED PRECIPITATES INAl-Mg-Si ALLOYS[J]. 金属学报, 2016, 52(8): 987-999.
[13] Ke ZHANG,Qilong YONG,Xinjun SUN,Zhaodong LI,Peilin ZHAO. EFFECT OF COILING TEMPERATURE ON MICRO-STRUCTURE AND MECHANICAL PROPERTIES OF Ti-V-Mo COMPLEX MICROALLOYED ULTRA-HIGH STRENGTH STEEL[J]. 金属学报, 2016, 52(5): 529-537.
[14] Biao YANG,Bailin ZHENG,Xingjian HU,Pengfei HE,Zhufeng YUE. EFFECT OF VOID ON NANOINDENTATION PROCESS OF Ni-BASED SINGLE CRYSTAL ALLOY[J]. 金属学报, 2016, 52(2): 129-134.
[15] Wei GU,Jingyuan LI,Yide WANG. EFFECT OF GRAIN SIZE AND TAYLOR FACTOR ON THE TRANSVERSE MECHANICAL PROPERTIES OF 7050 ALUMINIUM ALLOY EXTRUSION PROFILE AFTER OVER-AGING[J]. 金属学报, 2016, 52(1): 51-59.
No Suggested Reading articles found!