Please wait a minute...
Acta Metall Sin  2018, Vol. 54 Issue (12): 1777-1784    DOI: 10.11900/0412.1961.2018.00129
Orginal Article Current Issue | Archive | Adv Search |
Effect of Manganese Content on Tensile Deformation Behavior of Fe-Mn-C TWIP Steels
Dongdong LI1,2, Lihe QIAN1,2(), Shuai LIU1,2, Jiangying MENG1, Fucheng ZHANG1,2
1 State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, China
2 National Engineering Research Center for Equipment and Technology of Cold Strip Rolling, Yanshan University, Qinhuangdao 066004, China
Download:  HTML  PDF(6127KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Twinning-induced plasticity (TWIP) steels exhibit excellent mechanical properties including high tensile strength and good plasticity owing to their high strain-hardening rate. The high strain-hardening rate results mainly from deformation twinning; in addition, plane slip and dynamic strain ageing also have some contribution to strain-hardening rate. Until now, the influences of some alloy elements such as C, Al and Si on tensile properties of Fe-Mn-C based TWIP steels have received much attention. However, the effect of Mn content on the microstructure and tensile properties of twinning-dominated Fe-Mn-C TWIP steels is still not clear. In this work, the microstructure, tensile properties and strain hardening behavior of two Fe-Mn-C TWIP steels (Fe-13Mn-1.0C and Fe-22Mn-1.0C, mass fraction, %) were studied by using OM, TEM, SEM-EBSD and monotonic tensile tests. The results show that the yield and tensile strengths of the steel decrease while the elongation to fracture increases with the increase of Mn content. At low tensile strains, the increase of Mn content delays the formation of deformation twins. However, at higher strain level, the deformation twinning rate becomes higher and hence more deformation twins are produced in the steel with higher Mn content than that in the steel with lower Mn content. Furthermore, the thickness of deformation twins increases with increasing the Mn content. The twinning and tensile deformation behavior in the two steels are also discussed.

Key words:  high manganese steel      TWIP steel      deformation twin      tensile property      strain hardening      dynamic strain ageing     
Received:  08 April 2018     
ZTFLH:  TG142.1  
Fund: Supported by National Natural Science Foundation of China (No.51171166)

Cite this article: 

Dongdong LI, Lihe QIAN, Shuai LIU, Jiangying MENG, Fucheng ZHANG. Effect of Manganese Content on Tensile Deformation Behavior of Fe-Mn-C TWIP Steels. Acta Metall Sin, 2018, 54(12): 1777-1784.

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2018.00129     OR     https://www.ams.org.cn/EN/Y2018/V54/I12/1777

Fig.1  OM images of Fe-13Mn-1.0C (a) and Fe-22Mn-1.0C (b) steels after solution treatment at 1373 K for 2 and 30 min, respectively
Steel Mass fraction / % SFE
C Mn Al Si S P Fe mJm-2
Fe-13Mn-1.0C 0.99 12.95 <0.011 <0.001 0.007 <0.001 Bal. 27
Fe-22Mn-1.0C 0.97 21.97 <0.001 <0.001 0.018 <0.001 Bal. 37
Table 1  Chemical compositions and stacking fault energies (SFE) of the experimental TWIP steels
Fig.2  Stress-strain curves and local magnification (inset) (a) and strain hardening rate curves (b) of Fe-13Mn-1.0C and Fe-22Mn-1.0C steels
Fig.3  EBSD inverse pole figures (IPF) of the longitudinal section of Fe-13Mn-1.0C (a) and Fe-22Mn-1.0C (b) steels deformed to the strain of 0.6
Fig.4  SEM images of the longitudinal section of Fe-13Mn-1.0C steel (a, c, e) and Fe-22Mn-1.0C steel (b, d, f) deformed to the strains of 0.1 (a, b), 0.2 (c, d) and fracture (e, f)
Fig.5  Variation of the area fraction of twins as a function of strain in Fe-13Mn-1.0C and Fe-22Mn-1.0C steels
Fig.6  TEM images and the corresponding selected area electron diffraction patterns (insets) of Fe-13Mn-1.0C (a) and Fe-22Mn-1.0C (b) steels after fracture
Fig.7  Statistical results of twin thickness (a) and twin spacing (b) of Fe-13Mn-1.0C and Fe-22Mn-1.0C steels after fracture
[1] Frommeyer G, Brüx U, Neumann P.Supra-ductile and high-strength manganese-TRIP/TWIP steels for high energy absorption purposes[J]. ISIJ Int., 2003, 43: 438
[2] Barbier D, Gey N, Allain S, et al.Analysis of the tensile behavior of a TWIP steel based on the texture and microstructure evolutions[J]. Mater. Sci. Eng., 2009, A500: 196
[3] Ghasri-Khouzani M, McDermid J R. Effect of carbon content on the mechanical properties and microstructural evolution of Fe-22Mn-C steels[J]. Mater. Sci. Eng., 2015, A621: 118
[4] Bouaziz O, Allain S, Scott C.Effect of grain and twin boundaries on the hardening mechanisms of twinning-induced plasticity steels[J]. Scr. Mater., 2008, 58: 484
[5] Vercammen S, Blanpain B, De Cooman B C, et al. Cold rolling behavior of an austenitic Fe-30Mn-3Al-3Si TWIP steel: The importance of deformation twinning[J]. Acta Mater., 2004, 52: 2005
[6] Kim J K, De Cooman B C. Stacking fault energy and deformation mechanisms in Fe-xMn-0.6C-yAl TWIP steel[J]. Mater. Sci. Eng., 2016, A676: 216
[7] Liu F, Dan W J, Zhang W G.Strain hardening model of TWIP steels with manganese content[J]. Mater. Sci. Eng., 2016, A674: 178
[8] Jin J E, Lee Y K.Effects of Al on microstructure and tensile properties of C-bearing high Mn TWIP steel[J]. Acta Mater., 2012, 60: 1680
[9] Liu S, Qian L H, Meng J Y, et al.On the more persistently-enhanced strain hardening in carbon-increased Fe-Mn-C twinning-induced plasticity steel[J]. Mater. Sci. Eng., 2015, A639: 425
[10] Liu S, Qian L H, Meng J Y, et al.Simultaneously increasing both strength and ductility of Fe-Mn-C twinning-induced plasticity steel via Cr/Mo alloying[J]. Scr. Mater., 2017, 127: 10
[11] Chen X J.High Manganese Steel [M]. Beijing: China Machine Press, 1989: 377(陈希杰. 高锰钢[M]. 北京: 机械工业出版社, 1989: 377)
[12] Bouaziz O, Allain S, Scott C P, et al.High manganese austenitic twinning induced plasticity steels: A review of the microstructure properties relationships[J]. Curr. Opin. Solid State Mater. Sci., 2011, 15: 141
[13] Ding S X, Chang C P, Tu J F, et al.Microstructure and tensile behavior of 15-24 wt-% Mn TWIP steels[J]. Mater. Sci. Technol., 2013, 29: 1048
[14] Wang Y C, Lan P, Li Y, et al.Effect of alloying elements on mechanical behavior of Fe-Mn-C TWIP steel[J]. J. Mater. Eng., 2015, 43(9): 30(王玉昌, 兰鹏, 李杨等. 合金元素对Fe-Mn-C系TWIP钢力学行为的影响[J]. 材料工程, 2015, 43(9): 30)
[15] Bouaziz O, Zurob H, Chehab B, et al.Effect of chemical composition on work hardening of Fe-Mn-C TWIP steels[J]. Mater. Sci. Technol., 2011, 27: 707
[16] Dastur Y N, Leslie W C.Mechanism of work hardening in Hadfield manganese steel[J]. Metall. Trans., 1981, 12A: 749
[17] Qian L H, Guo P C, Zhang F C, et al.Abnormal room temperature serrated flow and strain rate dependence of critical strain of a Fe-Mn-C twin-induced plasticity steel[J]. Mater. Sci. Eng., 2013, A561: 266
[18] Qian L H, Guo P C, Meng J Y, et al.Unusual grain-size and strain-rate effects on the serrated flow in FeMnC twin-induced plasticity steels[J]. J. Mater. Sci., 2013, 48: 1669
[19] Yoo J D, Park K T.Microband-induced plasticity in a high Mn-Al-C light steel[J]. Mater. Sci. Eng., 2008, A496: 417
[20] Chen L, Kim H S, Kim S K, et al.Localized deformation due to portevin-LeChatelier effect in 18Mn-0.6C TWIP austenitic steel[J]. ISIJ Int., 2007, 47: 1804
[21] Saeed-Akbari A, Mosecker L, Schwedt A, et al.Characterization and prediction of flow behavior in high-manganese twinning induced plasticity steels: Part I. Mechanism maps and work-hardening behavior[J]. Metall. Mater. Trans., 2012, 43A: 1688
[22] Jeong K, Jin J E, Jung Y S, et al.The effects of Si on the mechanical twinning and strain hardening of Fe-18Mn-0.6C twinning-induced plasticity steel[J]. Acta Mater., 2013, 61: 3399
[23] Jung l C, Cho L, De Cooman B C. In situ observation of the influence of Al on deformation-induced twinning in TWIP steel[J]. ISIJ Int., 2015, 55: 870
[24] Pierce D T, Jiménez J A, Bentley J, et al.The influence of stacking fault energy on the microstructural and strain-hardening evolution of Fe-Mn-Al-Si steels during tensile deformation[J]. Acta Mater., 2015, 100: 178
[25] Zhu R F, Lv Y P, Li S T, et al.Valence electron structure of high manganese steel and its intrinsic property[J]. Chin. Sci. Bull., 1996, 41: 1336(朱瑞富, 吕宇鹏, 李士同等. 高锰钢的价电子结构及其本质特性[J]. 科学通报, 1996, 41: 1336)
[26] Zhang Y, Tao N R, Lu K.Effect of stacking-fault energy on deformation twin thickness in Cu-Al alloys[J]. Scr. Mater., 2009, 60: 211
[27] Wang S H, Liu Z Y, Wang G D.Influence of grain size on TWIP effect in a TWIP steel[J]. Acta Metall. Sin., 2009, 45: 1083(王书晗, 刘振宇, 王国栋. TWIP钢中晶粒尺寸对TWIP效应的影响[J]. 金属学报, 2009, 45: 1083)
[1] LI Yuancai, JIANG Wugui, ZHOU Yu. Effect of Nanopores on Tensile Properties of Single Crystal/Polycrystalline Nickel Composites[J]. 金属学报, 2020, 56(5): 776-784.
[2] YU Chenfan, ZHAO Congcong, ZHANG Zhefeng, LIU Wei. Tensile Properties of Selective Laser Melted 316L Stainless Steel[J]. 金属学报, 2020, 56(5): 683-692.
[3] LI Gen, LAN Peng, ZHANG Jiaquan. Solidification Structure Refinement in TWIP Steel by Ce Inoculation[J]. 金属学报, 2020, 56(5): 704-714.
[4] LI Jinxu,WANG Wei,ZHOU Yao,LIU Shenguang,FU Hao,WANG Zheng,KAN Bo. A Review of Research Status of Hydrogen Embrittlement for Automotive Advanced High-Strength Steels[J]. 金属学报, 2020, 56(4): 444-458.
[5] LI Yizhuang,HUANG Mingxin. A Method to Calculate the Dislocation Density of a TWIP Steel Based on Neutron Diffraction and Synchrotron X-Ray Diffraction[J]. 金属学报, 2020, 56(4): 487-493.
[6] WANG Shihong,LI Jian,GE Xin,CHAI Feng,LUO Xiaobing,YANG Caifu,SU Hang. Microstructural Evolution and Work Hardening Behavior of Fe-19Mn Alloy Containing Duplex Austenite and ε-Martensite[J]. 金属学报, 2020, 56(3): 311-320.
[7] WANG Xi,LIU Renci,CAO Ruxin,JIA Qing,CUI Yuyou,YANG Rui. Effect of Cooling Rate on Boride and Room Temperature Tensile Properties of β-Solidifying γ-TiAl Alloys[J]. 金属学报, 2020, 56(2): 203-211.
[8] Zheng LIU,Jianrong LIU,Zibo ZHAO,Lei WANG,Qingjiang WANG,Rui YANG. Microstructure and Tensile Property of TC4 Alloy Produced via Electron Beam Rapid Manufacturing[J]. 金属学报, 2019, 55(6): 692-700.
[9] Futao DONG,Fei XUE,Yaqiang TIAN,Liansheng CHEN,Linxiu DU,Xianghua LIU. Effect of Annealing Temperature on Microstructure, Properties and Hydrogen Embrittlement of TWIP Steel[J]. 金属学报, 2019, 55(6): 792-800.
[10] Dechun REN, Huhu SU, Huibo ZHANG, Jian WANG, Wei JIN, Rui YANG. Effect of Cold Rotary-Swaging Deformation on Microstructure and Tensile Properties of TB9 Titanium Alloy[J]. 金属学报, 2019, 55(4): 480-488.
[11] Yubi GAO, Yutian DING, Jianjun CHEN, Jiayu XU, Yuanjun MA, Dong ZHANG. Evolution of Microstructure and Texture During Cold Deformation of Hot-Extruded GH3625 Alloy[J]. 金属学报, 2019, 55(4): 547-554.
[12] ZHOU Bo, SUI Manling. Generation and Interaction Mechanism of Tension Kink Band in AZ31 Magnesium Alloy[J]. 金属学报, 2019, 55(12): 1512-1518.
[13] Shenghu CHEN, Lijian RONG. Microstructure Evolution During Solution Treatment and Its Effects on the Properties of Ni-Fe-Cr Alloy[J]. 金属学报, 2018, 54(3): 385-392.
[14] Kai ZHU, Cuilan WU, Pan XIE, Mei HAN, Yuanrui LIU, Xiangge ZHANG, Jianghua CHEN. Microstructure and Mechanical Properties of an Austenite/Ferrite Laminate Structured High-Manganese Steel[J]. 金属学报, 2018, 54(10): 1387-1398.
[15] Rui CHEN, Qingyan XU, Huiting GUO, Zhiyuan XIA, Qinfang WU, Baicheng LIU. Modeling of Strain Hardening Behavior and Mechanical Properties of Al-7Si-Mg Cast Aluminum AlloysDuring Tensile Process[J]. 金属学报, 2017, 53(9): 1110-1124.
No Suggested Reading articles found!