Please wait a minute...
Acta Metall Sin  2016, Vol. 52 Issue (1): 100-104    DOI: 10.11900/0412.1961.2015.00256
Current Issue | Archive | Adv Search |
INFLUENCE OF ALLOY ELEMENT Cu ON KINETIC MECHANISMS OF DEUTERIUM ABSORPTION IN ZIRCONIUM
Yun YANG,Xiping SONG()
State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083, China
Cite this article: 

Yun YANG,Xiping SONG. INFLUENCE OF ALLOY ELEMENT Cu ON KINETIC MECHANISMS OF DEUTERIUM ABSORPTION IN ZIRCONIUM. Acta Metall Sin, 2016, 52(1): 100-104.

Download:  HTML  PDF(3491KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

With increasing demand for energy, nuclear fusion has attracted more and more attention. In fusion process, the most promising of fusion reactions is the fusion of deuterium and tritium. Thus, deuterium absorption has become a key issue. At present, the extensively used materials for storage and supply of deuterium are uranium beds. However, upon hydrogenation, uranium is easily disintegrated into fine powder, which causes many undesirable problems. It has been found that zirconium alloys can take as much deuterium atoms as that of uranium alloys but with a lower density and price, thus becoming a candidate material for deuterium carrier. However, zirconium alloys usually occur to crack after deuterium absorption, which badly restricts their application as a deuterium carrier. In order to minimize the cracking, Cu is chosen as an alloying element, expecting to minimize the cracking. In this work, the kinetic mechanisms of deuterium absorption in Zr-xCu (x=0, 5%, 10%, mass fraction) alloys were investigated based on experiments and kinetic function calculations. The results show that with the increase of Cu content, the microstructure transforms from the primary single a-Zr phase of the pure Zr to the a-Zr and Zr2Cu duplex phases of the Zr-5%Cu and Zr-10%Cu alloys. Correspondingly, the equilibrium time of deuterium absorption increases significantly from 20 min for the pure Zr to 80 min for the Zr-5%Cu alloy and to 130 min for the Zr-10%Cu alloy. After deuterium absorption, the phase of pure Zr is e deuteride while the phases of Zr-5%Cu and Zr-10%Cu are e deuteride, Zr2Cu and Zr7Cu10. The kinetic mechanisms of deuterium absorption in these alloys are found to be controlled by a 2-dimensional diffusion mechanism in the pure Zr, and by a chemical reaction mechanism in the Zr-5%Cu and Zr-10%Cu alloys. The addition of Cu changes the kinetic mechanisms of the Zr-xCu alloys, resulting in slowing down deuterium absorption rate. It is attributed that during deuterium absorption of Zr-Cu alloys, Zr2Cu also absorbs deuterium and forms intermediate phase, such as Zr2CuHx. Then the intermediate phase will discompose into Zr7Cu10 and ε deuteride.

Key words:  Zr      Cu      deuterium absorption      kinetics     
Received:  12 May 2015     
Fund: Supported by National Natural Science Foundation of China (Nos.21171018 and 51271021)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2015.00256     OR     https://www.ams.org.cn/EN/Y2016/V52/I1/100

Fig.1  BSE images of Zr (a), Zr-5%Cu (b) and Zr-10%Cu (c) alloys
Fig.2  XRD spectra of Zr-xCu alloys before (a) and after (b) deutertion
Fig.3  Deuterium absorption kinetic curves (a) and transformed volume fraction vs time (b) for Zr-xCu alloys (t—time)
Fig.4  Fitting curves of Zr-xCu alloy using 2-dimensional diffusion (a) and chemical reaction (b) mechanism equations during deutertion (a—transformed volume fraction)
[1] Taylor N, Cortes P. Fusion Eng Des, 2014; 89: 1995
[2] Lupelli I, Murari A, Gaudio P, Gelfusa M, Mazon D, Vega J. Fusion Eng Des, 2013; 88: 738
[3] Hong B G. Fusion Eng Des, 2014; 89: 2493
[4] Pampin R, Davis A, Izquierdo J, Leichtle D, Loughlin M J, Sanz J, Turner A, Villari R, Wilson P P H. Fusion Eng Des, 2013; 88: 454
[5] Kanouff M P, Gharagozloo P E, Salloum M, Shugard A D. Chem Eng Sci, 2013; 91: 212
[6] Shugard A D, Buffleben G M, Johnson T A, Robinson D B. J Nucl Mater, 2014; 447: 304
[7] Bhattacharyya R, Mohan S. Renew Sust Energy Rev, 2015; 41: 872
[8] Ablitzer C, Le Guyadec F, Raynal J, Génin X, Duhart-Barone A. J Nucl Mater, 2013; 432: 135
[9] Totemeier T C. J Nucl Mater, 2000; 278: 301
[10] Le Guyadec F, Génin X, Bayle J P, Dugne O, Duhart-Barone A, Ablitzer C. J Nucl Mater, 2010; 396: 294
[11] Jat R A, Sawant S G, Rajan M B, Dhanuskar J R, Kaity S, Parid S C. J Nucl Mater, 2013; 443: 316
[12] Hu X X, Terrani K A, Wirth B D. J Nucl Mater, 2014; 448: 87
[13] Glazoffa M V, Tokuhiro A, Rashkeev S N, Sabharwalla P. J Nucl Mater, 2014; 444: 65
[14] Zheng J, Zhou X S, Mao L, Zhang H J, Liang J H, Sheng L S, Peng S. Int J Hydrogen Energy Mater, 2015; 40: 4597
[15] Lanzania L, Ruch M. J Nucl Mater, 2004; 324: 165
[16] Wongsawaeng D, Jaiyen S. J Nucl Mater, 2010; 403: 19
[17] Terrani K A, Balooch M, Wongsawaeng D, Jaiyen S, Olander D R. J Nucl Mater, 2010; 397: 61
[18] Zhao C, Song X P, Yang Y, Zhang B. Int J Hydrogen Energy Mater, 2013; 38: 10903
[19] Dou N N. Master Thesis, University of Science and Technology Beijing, 2014
[19] (窦娜娜. 北京科技大学硕士学位论文, 2014)
[20] Li Q, Chou K C, Jiang L J, Zhan F. Int J Hydrogen Energy Mater, 2004; 29: 843
[21] Dang J, Zhang G H, Chou K C, Reddy R G, He Y, Sun Y J. Int J Refract Met Hard Mater, 2013; 41: 216
[22] Li W H, Tian B H, Ma P, Wu E D. Acta Metall Sin, 2012; 48: 822
[22] (李武会, 田保红, 马 坪, 吴尔冬. 金属学报, 2012; 48: 822)
[23] Yoo H, Kim W, Ju H. Solid State Ionics, 2014; 262: 241
[24] Wang H, Prasad A K, Advani S G. Int J Hydrogen Energy Mater, 2014; 39: 11035
[25] Masanori H, Yukiko H, Kuniaki W. J Alloys Compd, 2009; 487: 489
[26] Filinchuk Y E, Yvon K. Inorg Chem, 2005; 44: 8191
[27] Kadel R, Weiss A. J Less-Common Met, 1979; 65: 89
[28] Couet A, Motta A T, Comstock R J. In: Comstock R J, Barbéris P eds., Zirconium in the Nuclear Industry: 17th International Symposium, West Conshonocken: ASTM International, 2015: 479
[1] CHANG Songtao, ZHANG Fang, SHA Yuhui, ZUO Liang. Recrystallization Texture Competition Mediated by Segregation Element in Body-Centered Cubic Metals[J]. 金属学报, 2023, 59(8): 1065-1074.
[2] LIU Xingjun, WEI Zhenbang, LU Yong, HAN Jiajia, SHI Rongpei, WANG Cuiping. Progress on the Diffusion Kinetics of Novel Co-based and Nb-Si-based Superalloys[J]. 金属学报, 2023, 59(8): 969-985.
[3] MU Yahang, ZHANG Xue, CHEN Ziming, SUN Xiaofeng, LIANG Jingjing, LI Jinguo, ZHOU Yizhou. Modeling of Crack Susceptibility of Ni-Based Superalloy for Additive Manufacturing via Thermodynamic Calculation and Machine Learning[J]. 金属学报, 2023, 59(8): 1075-1086.
[4] WANG Zongpu, WANG Weiguo, Rohrer Gregory S, CHEN Song, HONG Lihua, LIN Yan, FENG Xiaozheng, REN Shuai, ZHOU Bangxin. {111}/{111} Near Singular Boundaries in an Al-Zn-Mg-Cu Alloy Recrystallized After Rolling at Different Temperatures[J]. 金属学报, 2023, 59(7): 947-960.
[5] WU Dongjiang, LIU Dehua, ZHANG Ziao, ZHANG Yilun, NIU Fangyong, MA Guangyi. Microstructure and Mechanical Properties of 2024 Aluminum Alloy Prepared by Wire Arc Additive Manufacturing[J]. 金属学报, 2023, 59(6): 767-776.
[6] WANG Hanyu, LI Cai, ZHAO Can, ZENG Tao, WANG Zumin, HUANG Yuan. Direct Alloying of Immiscible Tungsten and Copper Based on Nano Active Structure and Its Thermodynamic Mechanism[J]. 金属学报, 2023, 59(5): 679-692.
[7] WANG Changsheng, FU Huadong, ZHANG Hongtao, XIE Jianxin. Effect of Cold-Rolling Deformation on Microstructure, Properties, and Precipitation Behavior of High-Performance Cu-Ni-Si Alloys[J]. 金属学报, 2023, 59(5): 585-598.
[8] LIU Manping, XUE Zhoulei, PENG Zhen, CHEN Yulin, DING Lipeng, JIA Zhihong. Effect of Post-Aging on Microstructure and Mechanical Properties of an Ultrafine-Grained 6061 Aluminum Alloy[J]. 金属学报, 2023, 59(5): 657-667.
[9] XU Linjie, LIU Hui, REN Ling, YANG Ke. Effect of Cu on In-Stent Restenosis and Corrosion Resistance of Ni-Ti Alloy[J]. 金属学报, 2023, 59(4): 577-584.
[10] ZHANG Zhefeng, LI Keqiang, CAI Tuo, LI Peng, ZHANG Zhenjun, LIU Rui, YANG Jinbo, ZHANG Peng. Effects of Stacking Fault Energy on the Deformation Mechanisms and Mechanical Properties of Face-Centered Cubic Metals[J]. 金属学报, 2023, 59(4): 467-477.
[11] WAN Tao, CHENG Zhao, LU Lei. Effect of Component Proportion on Mechanical Behaviors of Laminated Nanotwinned Cu[J]. 金属学报, 2023, 59(4): 567-576.
[12] HAN Weizhong, LU Yan, ZHANG Yuheng. Mechanism of Ductile-to-Brittle Transition in Body-Centered-Cubic Metals:A Brief Review[J]. 金属学报, 2023, 59(3): 335-348.
[13] ZHANG Yuexin, WANG Jujin, YANG Wen, ZHANG Lifeng. Effect of Cooling Rate on the Evolution of Nonmetallic Inclusions in a Pipeline Steel[J]. 金属学报, 2023, 59(12): 1603-1612.
[14] GONG Xiangpeng, WU Cuilan, LUO Shifang, SHEN Ruohan, YAN Jun. Effect of Natural Aging on Artificial Aging of an Al-2.95Cu-1.55Li-0.57Mg-0.18Zr Alloy at 160oC[J]. 金属学报, 2023, 59(11): 1428-1438.
[15] LI Sai, YANG Zenan, ZHANG Chi, YANG Zhigang. Phase Field Study of the Diffusional Paths in Pearlite-Austenite Transformation[J]. 金属学报, 2023, 59(10): 1376-1388.
No Suggested Reading articles found!