Please wait a minute...
Acta Metall Sin  2014, Vol. 50 Issue (11): 1319-1326    DOI: 10.11900/0412.1961.2014.00188
Current Issue | Archive | Adv Search |
CREVICE CORROSION BEHAVIORS OF Q235 WELD JOINT
YU Qiaohong, LIU Chao, PANG Xiaolu, LIU Quanlin, GAO Kewei()
School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083
Cite this article: 

YU Qiaohong, LIU Chao, PANG Xiaolu, LIU Quanlin, GAO Kewei. CREVICE CORROSION BEHAVIORS OF Q235 WELD JOINT. Acta Metall Sin, 2014, 50(11): 1319-1326.

Download:  HTML  PDF(9730KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

As a candidate package material for high level radiation waste disposal, the crevice corrosion behavior of Q235 low carbon steel weld joint was investigated in a solution simulated to the groundwater in the northwest part of China. The influences of temperature and oxygen content were evaluated. The microstructure of the weld joint was observed by OM, and SEM and surface profile were employed to analyze the crevice corrosion behavior of the weld joint. Open circuit potential of different regions of the weld joint was measured by electrochemical method. Experimental results indicated that the increases of temperature and oxygen content could promote the occurrence of crevice corrosion, and facilitate the corrosion processes both inside and outside the crevice. Fusion zone with a microstructure of clustered ferrite was the most severe corroded area in the weld joint, followed by weld metal, which was characterized by a coarse widmanstaetten structure. The microstructures of base metal and heat affected zone were fine and homogeneous, so these two regions underwent slighter corrosion.

Key words:  Q235 weld joint      crevice corrosion      temperature      oxygen      microstructure     
Received:  09 August 2014     
ZTFLH:  TG172.3  
Fund: National Natural Science Foundation of China (No.51271024)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2014.00188     OR     https://www.ams.org.cn/EN/Y2014/V50/I11/1319

Fig.1  Metallographic structures of different regions of Q235 weld joint
Fig.2  Macro morphologies of Q235 weld joint with corrosion product removal after immersing for 30 d (a, b), 90 d (c, d) and 180 d (e, f) in the aerated (a, c, e) and deaerated (b, d, f) simulated groundwater at 90 ℃ (BM—base metal, WM—weld metal, IC—inside crevice, OC—outside crevice, CE—around crevice edge)
Condition Immersing time / d DMAX, IC / μm DMAX, CE / μm DUNI, OC / μm
Aerated 30 31 - 25
90 109 - 50
180 209 - WM 90, BM 20
Deaerated 30 2 42 ≈0
90 10 WM 57; BM 22 ≈0
180 155 60 WM<8, BM<4
Table 1  Corrosion depths of Q235 weld joint after immersing for different times in the aerated and deaerated simulated groundwater at 90 ℃
Fig.3  Macro morphologies of Q235 weld joint with product removal after immersing for 180 d in the aerated (a) and deaerated (b) simulated groundwater at 25 ℃
Fig.4  Crevice corrosion depths of Q235 weld joints after immersing for 180 d in the aerated (a) and deaerated (b) simulated groundwater at 25 ℃ (The curves 1~4 are measured across the direction of lines 1~4 in Fig.3 respectively)
Immersing temperature / ℃ Condition DMAX, IC / μm DMAX, CE / μm DUNI, OC / μm
90 Aerated 209 - WM 90, BM 20
Deaerated 155 60 <8
25 Aerated <5 - WM 66, BM 30
Deaerated <4 - <8
Table 2  Corrosion depths of Q235 weld joint after immersing for 180 d in the aerated and deaerated simulated groundwater at 25 and 90 ℃
Fig.5  SEM images of Q235 weld joint inside the crevice after immersing for 30 d (a) and 90 d (b, c, d) in the aerated simulated groundwater at 90 ℃
Fig.6  SEM images of weld metal (a, c) and base metal (b, d) of Q235 weld joint inside the crevice after immersing for 90 d (a, b) and 180 d (c, d) in the deaerated simulated groundwater at 90 ℃
[1] Yin K J, Li C, Qiu S Y, Luo Q. Nucl Power Eng, 2007; 28(2 suppl): 76
(尹开锯, 李 聪, 邱邵宇, 罗 强. 核动力工程, 2007; 28(2 增刊): 76)
[2] Guo Y X. Phys Chem Inspection (Phys Vol), 1999; 35: 471
(郭演星. 理化检验(物理分册), 1999; 35: 471)
[3] Du Z Y. Material Connection Principle. Beijing: Mechanical Industry Press, 2011: 103
(杜则裕. 材料连接原理. 北京: 机械工业出版社, 2011: 103)
[4] Gong M. Theory of Metal Corrosion and Corrosion Control. Beijing: Chemical Industry Press, 2009: 160
(龚 敏. 金属腐蚀理论及腐蚀控制. 北京: 化学工业出版社, 2009: 160)
[5] Cai B P, Liu Y H, Tian X J, Wang F, Li H, Ji R J. Corros Sci, 2010; 52: 3235
[6] Abdulsalam M I. Corros Sci, 2005; 47: 1336
[7] Kennell G F, Evitts R W. Electrochim Acta, 2009; 54: 4696
[8] Engelhard G R, McMillion L G, Macdonald D D. J Nucl Mater, 2008; 379: 48
[9] Naganuma A, Fushimi K, Azumi K, Habazaki H, Konno H. Corros Sci, 2010; 52: 1179
[10] Zhang J W, Wang W X, Huang Y P, Wang B D, Liu X. J Welding, 2007; 28: 103
(张俊旺, 王文先, 黄延平, 王保东, 刘 旭. 焊接学报, 2007; 28: 103)
[11] Liu C S. Master Thesis, Shenyang Aerospace University, 2011
(柳春恕. 沈阳航空航天大学硕士学位论文, 2011)
[12] Lv H W, Dong S G, Wang J J, Li N, Lin C J. Sci Technol Rev, 2013; 31(Z1): 25
(吕虹玮, 董士刚, 王静静, 李 宁, 林昌健. 科技导报, 2013; 31(Z1): 25)
[13] Qu J S, Wang Y L. Chin J Nonferrous Met, 2001; 11(S1): 194
(屈金山, 王元良. 中国有色金属学报, 2001; 11(S1): 194)
[14] Lei A L, Guo Q Q, Feng L J. Electrochemistry, 2006; 12: 195
(雷阿利, 郭巧琴, 冯拉俊. 电化学, 2006; 12: 195)
[15] Sun Q L, Cao B, Wu Y S. J Beijing Univ Sci Technol, 2009; 31: 41
(孙齐磊, 曹 备, 吴荫顺. 北京科技大学学报, 2009; 31: 41)
[16] Kong X D, Yang M B, Zhu M W. Development Appl Mater, 2010; 25(4): 1
(孔小东, 杨明波, 朱梅五. 材料开发与应用, 2010; 25(4): 1)
[17] Yin S A, Lai H Q, Weng B S, Sun X T. Chem Construction Technol, 1998; 20(04): 6
(尹士安, 赖华强, 翁必生, 孙希桐. 化工施工技术, 1998; 20(04): 6)
[18] Lai C X. Total Corros Control, 2004; 18(6): 10
(赖春晓. 全面腐蚀控制, 2004; 18(6): 10)
[19] Zhang X B, Lian J, Wang H H. Weld Product Appl, 2013; (7): 32
(张心保, 连 杰, 王红鸿. 焊接生产应用, 2013; (7): 32)
[20] Kennell G F, Evitts R W, Heppner K L. Corros Sci, 2008; 50: 1716
[21] Al-Zahrani A M, Pickering H W. Electrochim Acta, 2005; 50: 3420
[22] Yang W,Gu R X,Li Q S,Xiao J X. The Local Corrosion of Metals. Beijing: Chemical Industry Press, 1995: 139
(杨 武,顾睿祥,黎樵燊,肖京先. 金属的局部腐蚀. 北京: 化学工业出版社, 1995: 139)
[23] Laycock N J, Stewart J, Newman R C. Corros Sci, 1997; 39: 1791
[24] Huang A G, Wang Y S, Li Z Y, Zhang G D. Mater Protect, 2004; 37(3): 6
(黄安国, 王永生, 李志远, 张国栋. 材料保护, 2004; 37(3): 6)
[1] WANG Lei, LIU Mengya, LIU Yang, SONG Xiu, MENG Fanqiang. Research Progress on Surface Impact Strengthening Mechanisms and Application of Nickel-Based Superalloys[J]. 金属学报, 2023, 59(9): 1173-1189.
[2] ZHANG Leilei, CHEN Jingyang, TANG Xin, XIAO Chengbo, ZHANG Mingjun, YANG Qing. Evolution of Microstructures and Mechanical Properties of K439B Superalloy During Long-Term Aging at 800oC[J]. 金属学报, 2023, 59(9): 1253-1264.
[3] LU Nannan, GUO Yimo, YANG Shulin, LIANG Jingjing, ZHOU Yizhou, SUN Xiaofeng, LI Jinguo. Formation Mechanisms of Hot Cracks in Laser Additive Repairing Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1243-1252.
[4] ZHENG Liang, ZHANG Qiang, LI Zhou, ZHANG Guoqing. Effects of Oxygen Increasing/Decreasing Processes on Surface Characteristics of Superalloy Powders and Properties of Their Bulk Alloy Counterparts: Powders Storage and Degassing[J]. 金属学报, 2023, 59(9): 1265-1278.
[5] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[6] JIANG He, NAI Qiliang, XU Chao, ZHAO Xiao, YAO Zhihao, DONG Jianxin. Sensitive Temperature and Reason of Rapid Fatigue Crack Propagation in Nickel-Based Superalloy[J]. 金属学报, 2023, 59(9): 1190-1200.
[7] LIU Xingjun, WEI Zhenbang, LU Yong, HAN Jiajia, SHI Rongpei, WANG Cuiping. Progress on the Diffusion Kinetics of Novel Co-based and Nb-Si-based Superalloys[J]. 金属学报, 2023, 59(8): 969-985.
[8] CHEN Liqing, LI Xing, ZHAO Yang, WANG Shuai, FENG Yang. Overview of Research and Development of High-Manganese Damping Steel with Integrated Structure and Function[J]. 金属学报, 2023, 59(8): 1015-1026.
[9] LI Jingren, XIE Dongsheng, ZHANG Dongdong, XIE Hongbo, PAN Hucheng, REN Yuping, QIN Gaowu. Microstructure Evolution Mechanism of New Low-Alloyed High-Strength Mg-0.2Ce-0.2Ca Alloy During Extrusion[J]. 金属学报, 2023, 59(8): 1087-1096.
[10] SUN Rongrong, YAO Meiyi, WANG Haoyu, ZHANG Wenhuai, HU Lijuan, QIU Yunlong, LIN Xiaodong, XIE Yaoping, YANG Jian, DONG Jianxin, CHENG Guoguang. High-Temperature Steam Oxidation Behavior of Fe22Cr5Al3Mo-xY Alloy Under Simulated LOCA Condition[J]. 金属学报, 2023, 59(7): 915-925.
[11] ZHANG Deyin, HAO Xu, JIA Baorui, WU Haoyang, QIN Mingli, QU Xuanhui. Effects of Y2O3 Content on Properties of Fe-Y2O3 Nanocomposite Powders Synthesized by a Combustion-Based Route[J]. 金属学报, 2023, 59(6): 757-766.
[12] WU Dongjiang, LIU Dehua, ZHANG Ziao, ZHANG Yilun, NIU Fangyong, MA Guangyi. Microstructure and Mechanical Properties of 2024 Aluminum Alloy Prepared by Wire Arc Additive Manufacturing[J]. 金属学报, 2023, 59(6): 767-776.
[13] FENG Aihan, CHEN Qiang, WANG Jian, WANG Hao, QU Shoujiang, CHEN Daolun. Thermal Stability of Microstructures in Low-Density Ti2AlNb-Based Alloy Hot Rolled Plate[J]. 金属学报, 2023, 59(6): 777-786.
[14] WANG Fa, JIANG He, DONG Jianxin. Evolution Behavior of Complex Precipitation Phases in Highly Alloyed GH4151 Superalloy[J]. 金属学报, 2023, 59(6): 787-796.
[15] GUO Fu, DU Yihui, JI Xiaoliang, WANG Yishu. Recent Progress on Thermo-Mechanical Reliability of Sn-Based Alloys and Composite Solder for Microelectronic Interconnection[J]. 金属学报, 2023, 59(6): 744-756.
No Suggested Reading articles found!