Please wait a minute...
Acta Metall Sin  2014, Vol. 50 Issue (6): 753-761    DOI: 10.3724/SP.J.1037.2013.00726
Original Article Current Issue | Archive | Adv Search |
MICROSTRUCTURE EVOLUTION AND WEAR RESISTANCE OF IN SITU Mg2Si/Al COMPOSITES UNDER DIFFERENT PREPARATION CONDITIONS
LIU Xiaobo 1, 2), ZHAO Yuguang 1)
1) College of Materials Science and Engineering, Jilin University, Changchun 130022
2) College of Mechanical Engineering, Beihua University, Jilin 132021
Download:  HTML  PDF(8224KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  Hypereutectic Al-Si alloys with high Mg content are in fact an in situ aluminium matrix composites containing a large amount of hard particles of Mg2Si, and the Mg2Si/Al composite has a potential as automobile brake disc material because the intermetallic compound Mg2Si exhibits high melting temperature, low density, high hardness, low thermal expansion coefficient (TEC) and reasonably high elastic modulus. However, the primary Mg2Si particles in normal Mg2Si/Al composites are usually very coarse and thus lead to room temperature brittleness and deficient wear resistance. Therefore, the composite with coarse primary Mg2Si particles need to be modified to obtain adequate mechanical strength and wear resistance. Numerous experiments have shown that development of a semi-solid microstructure in which dendritic characteristic is absent can lead to significant enhancement of the mechanical properties in the composite. The semi-solid forming has been recognized as a technique offering several potential advantages over casting or solid state forming, such as producing high quality components capable of full heat treatment to maximize properties, and reducing macrosegregation, solidification shrinkage and forming temperature. The key feature that permits the shaping of alloys in the semi-solid state is the absence of dendritic characteristics from the morphology of the solid phase. In the present work, in situ Mg2Si/Al composites were fabricated by using gravity casting, squeeze casting and semi-solid extrusion. The microstructure evolution and wear resistance of Mg2Si/Al composites were investigated. Mg2Si/Al semi-solid composites were fabricated by isothermal heat treatment technology, forming spherical reinforced phase and matrix structure. The effects of holding time on the microstructure and grain sizes of the composite were investigated. The results show that with P modification, Mg2Si particle in the as-cast microstructure of the composites is evolved from coarse dendrite into fine block structure with grain size of 35 μm. Furthermore, reinforcement Mg2Si with fine size and uniformly distribution exhibits regular spherical structure and a-Al grains exhibit spherical or ellipsoidal structure. The size of a-Al changes from 60 to 115 μm with increasing the holding time from 50 to 160 min. It is calculated that the cubic coarsening rate constants K of a-Al is 1.78×10-16 m3/s according to the statistical data. In addition, the hardness of squeeze casting and semi-solid extrusion composites enhanced 23.5% and 39% in comparison with casting composite, respectively. The wear test results show that, the wear resistance of Mg2Si/Al composite fabricated by using semi-solid extrusion is higher than those of composites fabricated by using gravity casting and squeeze casting under same load and wear particle size.
Key words:  in situ Mg2Si/Al composite      isothermal heat treatment      microstructure evolution      spheroidization      wear resistance     
Received:  13 November 2013     
ZTFLH:  TB331  
Fund: Supported by National Natural Science Foundation of China (No.50671044) and Science and Technology Development Project of Jilin Province of China (No.20070506)

Cite this article: 

LIU Xiaobo , ZHAO Yuguang . MICROSTRUCTURE EVOLUTION AND WEAR RESISTANCE OF IN SITU Mg2Si/Al COMPOSITES UNDER DIFFERENT PREPARATION CONDITIONS. Acta Metall Sin, 2014, 50(6): 753-761.

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2013.00726     OR     https://www.ams.org.cn/EN/Y2014/V50/I6/753

[1] Qin Q D, Zhao Y G, Xiu K, Zhou W, Liang Y H. Mater Sci Eng, 2005; A407: 196
[2] Jiang Q C, Wang H Y, Wang Y, Ma B X, Wang J G. Mater Sci Eng, 2005; A392: 130
[3] Zhang J, Fan Z, Wang Y Q, Zhou B L. Mater Sci Eng, 2000; A281: 104
[4] Zhang G J, Wang Y Q, Yang B, Zhou B L. J Mater Res, 1999; 14: 68
[5] Zhang J, Fan Z, Wang Y Q, Zhou B L. Scr Mater, 2000; 42: 1101 
[6] Zhang J, Fan Z, Wang Y Q, Zhou B. J Mater Sci Lett, 1999; 18: 783
[7] Li C. PhD Dissertation, Shandong University, Jinan, 2012
(李 冲. 山东大学博士学位论文, 济南, 2012)
[8] Ren Y Y. PhD Dissertation, Shenyang University of Technology, 2012
(任玉艳. 沈阳工业大学博士学位论文, 2012)
[9] Spencer D B, Mehrabian R, Flemings M C. Metall Trans, 1972; 3A: 1925
[10] Atkinson H V. Prog Mater Sci, 2005; 50: 341
[11] Wang J L, Su Y H, Tsao C Y A. Scr Mater, 1997; 37: 2003
[12] Vives C. Metall Mater Trans, 1992; 23B: 189
[13] Li S S, Zhao A M, Mao W M, Zhong X Y, Han Y F. Acta Metall Sin, 2000; 36: 545
(李树索, 赵爱民, 毛卫民, 钟雪友, 韩雅芳. 金属学报, 2000; 36: 545)
[14] Liu H M, He J P, Yang B, Zhang J S. Acta Metall Sin, 2006; 42: 158
(刘慧敏, 何建平, 杨 滨, 张济山. 金属学报, 2006; 42: 158)
[15] Guan L N, Geng L, Zhang H W, Huang L J. Trans Nonferrous Met Soc China, 2011; 21: s274
[16] Mohammadi H, Ketabchi M, Kalaki A. J Mater Eng Perform, 2011; 20: 1256
[17] Qin Q D. PhD Dissertation, Jilin University, Changchun, 2008
(秦庆东. 吉林大学博士学位论文, 长春, 2008)
[18] Qin Q D, Zhao Y G, Cong P J, Zhou W, Xu B. Mater Sci Eng, 2007; A444: 99
[19] Canyook R, Petsut S, Wisutmethangoon S, Flemings M C, Wannasin J. Trans Nonferrous Met Soc China, 2010; 20: 1649
[20] Zhang J, Fan Z, Wang Y Q, Zhou B L. J Mater Sci Lett, 2000; 19: 1825
[21] Qin Q D, Zhao Y G, Zhou W, Cong P J. Mater Sci Eng, 2007; A447: 186
[22] Manson-Whitton E D. PhD Dissertation, University of Oxford, 1999
[23] Manson-Whitton E D, Stone I C, Jones J R, Grant P S, Cantor B. Acta Mater, 2002; 50: 2517
[24] Hu H Q. Metal Solidification Principle. Beijing: China Machine Press, 2000: 105
(胡汉起. 金属凝固原理. 北京: 机械工业出版社, 2000: 105)
[25] Loue W R, Suery M. Mater Sci Eng, 1995; A203: 1
[26] Ferrante M, De Freitas E. Mater Sci Eng, 1999; A271: 172
[1] WANG Tao,WAN Zhipeng,LI Zhao,LI Peihuan,LI Xinxu,WEI Kang,ZHANG Yong. Effect of Heat Treatment Parameters on Microstructure and Hot Workability of As-Cast Fine Grain Ingot of GH4720Li Alloy[J]. 金属学报, 2020, 56(2): 182-192.
[2] JIANG He,DONG Jianxin,ZHANG Maicang,YAO Zhihao,YANG Jing. Stress Relaxation Mechanism for Typical Nickel-Based Superalloys Under Service Condition[J]. 金属学报, 2019, 55(9): 1211-1220.
[3] Hulin DONG,Haiping BAO,Jianhong PENG. Effect of TiC Contents on Mechanical Properties and Wear Resistance of Iron-Based Composites[J]. 金属学报, 2019, 55(8): 1049-1057.
[4] Yingjun GAO, Yujiang LU, Lingyi KONG, Qianqian DENG, Lilin HUANG, Zhirong LUO. Phase Field Crystal Model and Its Application for Microstructure Evolution of Materials[J]. 金属学报, 2018, 54(2): 278-292.
[5] Zongyi MA, Qiao SHANG, Dingrui NI, Bolv XIAO. Friction Stir Welding of Magnesium Alloys: A Review[J]. 金属学报, 2018, 54(11): 1597-1617.
[6] Yizhe MAO, Jianguo LI, Lei FENG. Effect of Coarse β(Al3Mg2) Phase on Microstructure Evolution in 573 K Annealed Al-10Mg Alloy by Uniaxial Compression[J]. 金属学报, 2018, 54(10): 1451-1460.
[7] Yongjin WANG, Renbo SONG, Renfeng SONG. Deformation Behavior and Microstructure Evolution of 9Cr18 Alloy During Semi-Solid Compression[J]. 金属学报, 2018, 54(1): 39-46.
[8] Liangshun LUO,Tong LIU,Yanning ZHANG,Yanqing SU,Jingjie GUO,Hengzhi FU. MICROSTRUCTURE EVOLUTION AND GROWTH BE-HAVIORS OF FACETED PHASE IN DIRECTIONALLY SOLIDIFIED Al-Y ALLOYS I. Microstructure Evolution of Directionally Solidified Al-15%Y Hypereutectic Alloy[J]. 金属学报, 2016, 52(7): 859-865.
[9] Shilu ZHAO,Zhen ZHANG,Jun ZHANG,Jianming WANG,Zhenggui ZHANG. MICROSTRUCTURE AND WEAR RESISTANCE OF TiAlZrCr/(Ti, Al, Zr, Cr)N GRADIENT FILMS DEPOSITED BY MULTI-ARC ION PLATING[J]. 金属学报, 2016, 52(6): 747-754.
[10] Liang YANG,Shubo GAO,Yanli WANG,Teng YE,Lin SONG,Junpin LIN. EFFECT OF Si ADDITION ON THE MICROSTRUCTURE AND ROOM TEMPERATURE TENSILE PROPERTIES OF HIGH Nb-TiAl ALLOY[J]. 金属学报, 2015, 51(7): 859-865.
[11] Jinlan AN,Lei WANG,Yang LIU,Guohua XU,Guangpu ZHAO. INFLUENCES OF LONG-TERM AGING ON MICRO- STRUCTURE EVOLUTION AND LOW CYCLE FATIGUE BEHAVIOR OF GH4169 ALLOY[J]. 金属学报, 2015, 51(7): 835-843.
[12] Xiaoyun YUAN, Liqing CHEN. HOT DEFORMATION AT ELEVATED TEMPERATURE AND RECRYSTALLIZATION BEHAVIOR OF A HIGH MANGANESE AUSTENITIC TWIP STEEL[J]. 金属学报, 2015, 51(6): 651-658.
[13] Mingfan QI, Yonglin KANG, Bing ZHOU, Guoming ZHU, Huanhuan ZHANG. MICROSTRUCTURES AND PROPERTIES OF AZ91D MAGNESIUM ALLOY PRODUCED BY FORCED CONVECTION MIXING RHEO-DIECASTING PROCESS[J]. 金属学报, 2015, 51(6): 668-676.
[14] MA Liping, LIANG Zhiqiang, WANG Xibin, ZHAO Wenxiang, JIAO Li, LIU Zhibing. INFLUENCE OF PULSED MAGNETIC TREATMENT ON MICROSTRUCTURES AND MECHANICAL PROPERTIES OF M42 HIGH SPEED STEEL TOOL[J]. 金属学报, 2015, 51(3): 307-314.
[15] Wenfang CUI,Dong CAO,Gaowu QIN. MICROSTRUCTURE AND WEAR RESISTANCE OF Ti/TiN MULTILAYER FILMS DEPOSITED BY MAGNETRON SPUTTERING[J]. 金属学报, 2015, 51(12): 1531-1537.
No Suggested Reading articles found!