Please wait a minute...
Acta Metall Sin  2014, Vol. 50 Issue (6): 753-761    DOI: 10.3724/SP.J.1037.2013.00726
Current Issue | Archive | Adv Search |
MICROSTRUCTURE EVOLUTION AND WEAR RESISTANCE OF IN SITU Mg2Si/Al COMPOSITES UNDER DIFFERENT PREPARATION CONDITIONS
LIU Xiaobo1,2, ZHAO Yuguang1
1 College of Materials Science and Engineering, Jilin University, Changchun 130022
2 College of Mechanical Engineering, Beihua University, Jilin 132021
Cite this article: 

LIU Xiaobo, ZHAO Yuguang. MICROSTRUCTURE EVOLUTION AND WEAR RESISTANCE OF IN SITU Mg2Si/Al COMPOSITES UNDER DIFFERENT PREPARATION CONDITIONS. Acta Metall Sin, 2014, 50(6): 753-761.

Download:  HTML  PDF(8224KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Hypereutectic Al-Si alloys with high Mg content are in fact an in situ aluminium matrix composites containing a large amount of hard particles of Mg2Si, and the Mg2Si/Al composite has a potential as automobile brake disc material because the intermetallic compound Mg2Si exhibits high melting temperature, low density, high hardness, low thermal expansion coefficient (TEC) and reasonably high elastic modulus. However, the primary Mg2Si particles in normal Mg2Si/Al composites are usually very coarse and thus lead to room temperature brittleness and deficient wear resistance. Therefore, the composite with coarse primary Mg2Si particles need to be modified to obtain adequate mechanical strength and wear resistance. Numerous experiments have shown that development of a semi-solid microstructure in which dendritic characteristic is absent can lead to significant enhancement of the mechanical properties in the composite. The semi-solid forming has been recognized as a technique offering several potential advantages over casting or solid state forming, such as producing high quality components capable of full heat treatment to maximize properties, and reducing macrosegregation, solidification shrinkage and forming temperature. The key feature that permits the shaping of alloys in the semi-solid state is the absence of dendritic characteristics from the morphology of the solid phase. In the present work, in situ Mg2Si/Al composites were fabricated by using gravity casting, squeeze casting and semi-solid extrusion. The microstructure evolution and wear resistance of Mg2Si/Al composites were investigated. Mg2Si/Al semi-solid composites were fabricated by isothermal heat treatment technology, forming spherical reinforced phase and matrix structure. The effects of holding time on the microstructure and grain sizes of the composite were investigated. The results show that with P modification, Mg2Si particle in the as-cast microstructure of the composites is evolved from coarse dendrite into fine block structure with grain size of 35 μm. Furthermore, reinforcement Mg2Si with fine size and uniformly distribution exhibits regular spherical structure and α-Al grains exhibit spherical or ellipsoidal structure. The size of α-Al changes from 60 to 115 μm with increasing the holding time from 50 to 160 min. It is calculated that the cubic coarsening rate constants K of α-Al is 1.78×10-16 m3/s according to the statistical data. In addition, the hardness of squeeze casting and semi-solid extrusion composites enhanced 23.5% and 39% in comparison with casting composite, respectively. The wear test results show that, the wear resistance of Mg2Si/Al composite fabricated by using semi-solid extrusion is higher than those of composites fabricated by using gravity casting and squeeze casting under same load and wear particle size.

Key words:  in situ Mg2Si/Al composite      isothermal heat treatment      microstructure evolution      spheroidization      wear resistance     
Received:  13 November 2013     
ZTFLH:  TB331  
Fund: Supported by National Natural Science Foundation of China (No.50671044) and Science and Technology Development Project of Jilin Province of China (No.20070506)

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2013.00726     OR     https://www.ams.org.cn/EN/Y2014/V50/I6/753

Fig.1  XRD spectra of in situ Mg2Si/Al composites
Fig.2  Microstructures of in situ Mg2Si/Al composites fabricated by gravity casting (a, b) and squeeze casting (c, d)

(a, c) low magnification (b, d) high magnification

Fig.3  DTA curve of as-cast Mg2Si/Al composite
Fig.4  Microstructures of in situ Mg2Si/Al composites fabricated by semi-solid extrusion at low (a) and high (b) magnification
Fig.5  Microstructures of Mg2Si/Al composite by semi-solid method after different heat treatment times under specific pressure of 255 MPa

(a) 30 min (b) 40 min (c) 50 min (d) 60 min (e) 80 min (f) 100 min (g) 120 min (h) 160 min

Fig.6  Wear volume versus applied load curves for in situ Mg2Si/Al composites
Fig.7  Wear volume versus wear particle size for in situ Mg2Si/Al composites
Fig.8  Schematic illustration of semi-solid structure evolution of Mg2Si/Al composite during heat treatment

(a) original α-Al dendrite and primary Mg2Si

(b) melting, liquid penetration and combining

(c) removing

(d) coalescence, ripening and spheroid formation

[1] Qin Q D, Zhao Y G, Xiu K, Zhou W, Liang Y H. Mater Sci Eng, 2005; A407: 196
[2] Jiang Q C, Wang H Y, Wang Y, Ma B X, Wang J G. Mater Sci Eng, 2005; A392: 130
[3] Zhang J, Fan Z, Wang Y Q, Zhou B L. Mater Sci Eng, 2000; A281: 104
[4] Zhang G J, Wang Y Q, Yang B, Zhou B L. J Mater Res, 1999; 14: 68
[5] Zhang J, Fan Z, Wang Y Q, Zhou B L. Scr Mater, 2000; 42: 1101
[6] Zhang J, Fan Z, Wang Y Q, Zhou B. J Mater Sci Lett, 1999; 18: 783
[7] Li C. PhD Dissertation, Shandong University, Jinan, 2012
(李冲. 山东大学博士学位论文, 济南, 2012)
[8] Ren Y Y. PhD Dissertation, Shenyang University of Technology, 2012
(任玉艳. 沈阳工业大学博士学位论文, 2012)
[9] Spencer D B, Mehrabian R, Flemings M C. Metall Trans, 1972; 3A: 1925
[10] Atkinson H V. Prog Mater Sci, 2005; 50: 341
[11] Wang J L, Su Y H, Tsao C Y A. Scr Mater, 1997; 37: 2003
[12] Vives C. Metall Mater Trans, 1992; 23B: 189
[13] Li S S, Zhao A M, Mao W M, Zhong X Y, Han Y F. Acta Metall Sin, 2000; 36: 545
(李树索, 赵爱民, 毛卫民, 钟雪友, 韩雅芳. 金属学报, 2000; 36: 545)
[14] Liu H M, He J P, Yang B, Zhang J S. Acta Metall Sin, 2006; 42: 158
(刘慧敏, 何建平, 杨 滨, 张济山. 金属学报, 2006; 42: 158)
[15] Guan L N, Geng L, Zhang H W, Huang L J. Trans Nonferrous Met Soc China, 2011; 21: s274
[16] Mohammadi H, Ketabchi M, Kalaki A. J Mater Eng Perform, 2011; 20: 1256
[17] Qin Q D. PhD Dissertation, Jilin University, Changchun, 2008
(秦庆东. 吉林大学博士学位论文, 长春, 2008)
[18] Qin Q D, Zhao Y G, Cong P J, Zhou W, Xu B. Mater Sci Eng, 2007; A444: 99
[19] Canyook R, Petsut S, Wisutmethangoon S, Flemings M C, Wannasin J. Trans Nonferrous Met Soc China, 2010; 20: 1649
[20] Zhang J, Fan Z, Wang Y Q, Zhou B L. J Mater Sci Lett, 2000; 19: 1825
[21] Qin Q D, Zhao Y G, Zhou W, Cong P J. Mater Sci Eng, 2007; A447: 186
[22] Manson-Whitton E D. PhD Dissertation, University of Oxford, 1999
[23] Manson-Whitton E D, Stone I C, Jones J R, Grant P S, Cantor B. Acta Mater, 2002; 50: 2517
[24] Hu H Q. Metal Solidification Principle. Beijing: China Machine Press, 2000: 105
(胡汉起. 金属凝固原理. 北京: 机械工业出版社, 2000: 105)
[25] Loue W R, Suery M. Mater Sci Eng, 1995; A203: 1
[26] Ferrante M, De Freitas E. Mater Sci Eng, 1999; A271: 172
[1] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[2] LI Jingren, XIE Dongsheng, ZHANG Dongdong, XIE Hongbo, PAN Hucheng, REN Yuping, QIN Gaowu. Microstructure Evolution Mechanism of New Low-Alloyed High-Strength Mg-0.2Ce-0.2Ca Alloy During Extrusion[J]. 金属学报, 2023, 59(8): 1087-1096.
[3] WANG Fa, JIANG He, DONG Jianxin. Evolution Behavior of Complex Precipitation Phases in Highly Alloyed GH4151 Superalloy[J]. 金属学报, 2023, 59(6): 787-796.
[4] WANG Haifeng, ZHANG Zhiming, NIU Yunsong, YANG Yange, DONG Zhihong, ZHU Shenglong, YU Liangmin, WANG Fuhui. Effect of Pre-Oxidation on Microstructure and Wear Resistance of Titanium Alloy by Low Temperature Plasma Oxynitriding[J]. 金属学报, 2023, 59(10): 1355-1364.
[5] FANG Yuanzhi, DAI Guoqing, GUO Yanhua, SUN Zhonggang, LIU Hongbing, YUAN Qinfeng. Effect of Laser Oscillation on the Microstructure and Mechanical Properties of Laser Melting Deposition Titanium Alloys[J]. 金属学报, 2023, 59(1): 136-146.
[6] LI Zhao, JIANG He, WANG Tao, FU Shuhong, ZHANG Yong. Microstructure Evolution of GH2909 Low Expansion Superalloy During Heat Treatment[J]. 金属学报, 2022, 58(9): 1179-1188.
[7] LIANG Chen, WANG Xiaojuan, WANG Haipeng. Formation Mechanism of B2 Phase and Micro-Mechanical Property of Rapidly Solidified Ti-Al-Nb Alloy[J]. 金属学报, 2022, 58(9): 1169-1178.
[8] YUAN Bo, GUO Mingxing, HAN Shaojie, ZHANG Jishan, ZHUANG Linzhong. Effect of 3%Zn Addition on the Non-Isothermal Precipitation Behaviors of Al-Mg-Si-Cu Alloys[J]. 金属学报, 2022, 58(3): 345-354.
[9] MA Minjing, QU Yinhu, WANG Zhe, WANG Jun, DU Dan. Dynamics Evolution and Mechanical Properties of the Erosion Process of Ag-CuO Contact Materials[J]. 金属学报, 2022, 58(10): 1305-1315.
[10] HOU Yubai, YU Yueguang, GUO Zhimeng. Simulation Study of Smoothed Particle Hydrodynamics (SPH) Method in Plasma Spheroidization of W-Ni-Fe Ternary Alloys[J]. 金属学报, 2021, 57(2): 247-256.
[11] XU Jinghui, LI Longfei, LIU Xingang, LI Hui, FENG Qiang. Thermal-Stress Coupling Effect on Microstructure Evolution of a Fourth-Generation Nickel-Based Single-Crystal Superalloy at 1100oC[J]. 金属学报, 2021, 57(2): 205-214.
[12] LIU Chao, YAO Zhihao, GUO Jing, PENG Zichao, JIANG He, DONG Jianxin. Microstructure Evolution Behavior of Powder Superalloy FGH4720Li at Near Service Temperature[J]. 金属学报, 2021, 57(12): 1549-1558.
[13] LIU Chenxi, MAO Chunliang, CUI Lei, ZHOU Xiaosheng, YU Liming, LIU Yongchang. Recent Progress in Microstructural Control and Solid-State Welding of Reduced Activation Ferritic/Martensitic Steels[J]. 金属学报, 2021, 57(11): 1521-1538.
[14] WU Yun, LIU Yahui, KANG Maodong, GAO Haiyan, WANG Jun, SUN Baode. Microstructure Evolution of K4169 Alloy During Cyclic Loading[J]. 金属学报, 2020, 56(9): 1185-1194.
[15] WANG Tao,WAN Zhipeng,LI Zhao,LI Peihuan,LI Xinxu,WEI Kang,ZHANG Yong. Effect of Heat Treatment Parameters on Microstructure and Hot Workability of As-Cast Fine Grain Ingot of GH4720Li Alloy[J]. 金属学报, 2020, 56(2): 182-192.
No Suggested Reading articles found!