Please wait a minute...
Acta Metall Sin  2014, Vol. 50 Issue (6): 707-714    DOI: 10.3724/SP.J.1037.2014.00003
Current Issue | Archive | Adv Search |
INVESTIGATION OF MICROSTRUCTURE AND TEXTURE OF β PHASE IN A FORGED TC18 TITANIUM ALLOY BAR
LI Kai1, YANG Ping1(), SHA Aixue2, YAN Mengqi2
1 School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083
2 Beijing Institute of Aeronautical Materials, Aviation Industry Corporation of China, Beijing 100095
Cite this article: 

LI Kai, YANG Ping, SHA Aixue, YAN Mengqi. INVESTIGATION OF MICROSTRUCTURE AND TEXTURE OF β PHASE IN A FORGED TC18 TITANIUM ALLOY BAR. Acta Metall Sin, 2014, 50(6): 707-714.

Download:  HTML  PDF(9449KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

To understand the differences in the mechanical properties between the center and surface regions of large size forged TC18 titanium alloy bar, electron backscatter diffraction (EBSD) technique is applied to reveal the differences in textures and strains in β phase in addition to the microstructures observation. The influence of the states of β phase on the deviation to the Burgers orientation relationship (OR) between α/β phases is also analyzed according to the acquired EBSD information. It is found that the β phases in different positions of forged bar are in different states of strain, textures and grain sizes. The β phase in the center shows strong <100> texture and coarse and inhomogeneous grain sizes which all contribute to the difference in properties. The spheroidization of αp phase proceeded mainly within β grains at subgrain boundaries and the OR between two phases changed slightly as the lamella αp phase transforms into block-like αp phase, but changed strongly during transforming to globular morphology. The misorientation in β phase is an effective parameter to evaluate the contribution of work-hardening state for the enhancement of strength, whereas the level of the deviation to Burgers OR is an effective parameter to evaluate the spheroidizing rate and the recovery extent.

Key words:  titanium alloy      forging      texture      phase transformation     
Received:  02 January 2014     
ZTFLH:  TG146.23  

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2014.00003     OR     https://www.ams.org.cn/EN/Y2014/V50/I6/707

Fig.1  SEM images of different locations in forged TC18 Ti alloy bar

(a) center (b) intermediate region (R/2, R—radius) (c) surface region

Fig.2  EBSD maps (a~c) and pole figures (d~f) at low magnification of different locations in the bar

(a, d) center (b, e) intermediate region (c, f) surface region

Fig.3  EBSD maps and pole figures at high magnification in the center of the bar

(a) map of β phase (b) map of α phase (c) misorientation of α phase

(d, e) pole figures of β phase, α phase shown by contour line

(f, g) pole figures of β phase, α phase shown by single orientation data

Fig.4  EBSD maps and pole figures at high magnification in the intermediate region of the bar

(a) map of β phase (b) map of α phase (c) misorientation of α phase

(d, e) pole figures of β phase, α phase shown by contour line

(f, g) pole figures of β phase, α phase shown by single orientation data

Fig.5  EBSD maps and pole figures at high magnification in the surface region of the bar

(a) map of β phase (b) map of α phase (c) misorientation of α phase

(d, e) pole figures of β phase, α phase shown by contour line

(f, g) pole figures of β phase, α phase shown by single orientation data

Fig.6  Phases-boundary maps showing the deviation to the Burgers orientation relationship in different locations of the bar (The β phase is shown in the blue areas and the α phase is shown in grey areas. Misorientation angles in white boundary lines : &lt;10°, those in green lines: between 10° and 20°, those in red lines: &gt; 20°. Arrows show two spherical αp grains in low misorientation with β phase in Fig.6b)

(a) center (b) intermediate region (c) surface region

[1] Zhang Y Q, Guo H Z, Sun H L, Yao Z K. Mater Heat Treatment, 2012; 41(6): 147
(张永强, 郭鸿镇, 孙红兰, 姚泽坤. 热加工工艺, 2012; 41(6): 147)
[2] Huang X, Zhu Z S, Wang H H. Advanced Aeronautical Titanium Alloys and Applications. Beijing: National Defence Industry Press, 2012: 92
(黄 旭,朱知寿,王红红. 先进航空钛合金材料与应用. 北京: 国防工业出版社, 2012: 92)
[3] Qiao E L, Feng Y Q, Li W Q, Xie R P, Zhang S B, Chen R J. Met World, 2013; (4): 72
(乔恩利, 冯永琦, 李渭清, 谢仁沛, 张少波, 陈瑞菁. 金属世界, 2013; (4): 72)
[4] Glavicic M G, Goetz R L, Barker D R. Metall Mater Trans, 2008; 49A: 887
[5] Lonardelli I, Gey N, Wenk H R. Acta Mater, 2007; 55: 5718
[6] Gurao N P, Ali AA, Suwas S. Mater Sci Eng, 2009; A504: 24
[7] Cayron C. Scr Mater, 2008; 59: 570
[8] Salem A A, Glavicic M G, Semiatin S L. Mater Sci Eng, 2008; A494: 350
[9] Obasi G C, Moat R J, Prakash D G L. Acta Mater, 2012; 60: 7169
[10] Thomas M J, Wynne B P, Rainforth W M. Mater Charact, 2005; 55: 388
[11] Markovsky P E, Matviychuk Y V, Bondarchuk V I. Mater Sci Eng,2013; A559: 782
[12] Semiatin S L, Kinsel K T, Pilchak A L, Sargent G A. Metall Mater Trans, 2013; 44A: 3852
[13] Sargent G A, Kinsel K T, Pilchak A L. Metall Mater Trans, 2012; 43A: 3570
[14] Obasi G C, Birosca S, Quinta D F J. Acta Mater, 2012; 60: 1048
[15] Obasi G C, Quinta D F J, Rugg D. Mater Sci Eng, 2013; A576: 272
[16] Semiatin S L, Fagin P N, Glavicic M G, Ivasishin O M. Mater Sci Eng, 2001; A299: 225
[17] Jackson M, Dashwood R, Christodoulou L. Metall Mater Trans, 2005; 36A: 1317
[18] Karthikeyan T, Dasgupta A, Khatirkar R. Mater Sci Eng, 2010; A528: 549
[19] He D, Zhu J C, Zaefferer S, Raabe D. Mater Sci Eng, 2012; A549: 20
[20] Li C, Zhang X, Zhou K. Mater Sci Eng, 2012; A558: 668
[21] Germain L, Gey N, Humbert M. Acta Mater, 2008; 56: 4298
[22] Gey N, Bocher P, Uta E. Acta Mater, 2012; 60: 2647
[23] Leo Prakash D G, Honniball P, Rugg D. Acta Mater, 2013; 61: 3200
[24] Glavicic M G, Miller G D, Semiatin S L. Scr Mater, 2006; 54: 281
[25] Gey N, Humbert M. Acta Mater, 2002; 50: 277
[26] Shao H, Zhao Y Q, Ge P, Zeng W D. Mater Sci Eng, 2013; A586: 215
[27] Lütjering G. Mater Sci Eng, 1998; A243: 32
[28] Zhang Z,Wang Q J,Mo W. Titanium Metal Science and Heat Treatment. Beijing: Metallurgical Industry Press, 2009: 86
(张翥,王群骄,莫畏. 钛的金属学和热处理. 北京: 冶金工业出版社, 2009: 86)
[29] Zhao D H, Wang L, Zhi M S, Xu F. Chin J Stere Image Analy, 2013; 18: 356
(赵登辉, 王琳, 智茂盛, 徐峰. 中国体视学与图像分析, 2013; 18: 356)
[1] BAI Jiaming, LIU Jiantao, JIA Jian, ZHANG Yiwen. Creep Properties and Solute Atomic Segregation of High-W and High-Ta Type Powder Metallurgy Superalloy[J]. 金属学报, 2023, 59(9): 1230-1242.
[2] DU Jinhui, BI Zhongnan, QU Jinglong. Recent Development of Triple Melt GH4169 Alloy[J]. 金属学报, 2023, 59(9): 1159-1172.
[3] CHANG Songtao, ZHANG Fang, SHA Yuhui, ZUO Liang. Recrystallization Texture Competition Mediated by Segregation Element in Body-Centered Cubic Metals[J]. 金属学报, 2023, 59(8): 1065-1074.
[4] ZHAO Pingping, SONG Yingwei, DONG Kaihui, HAN En-Hou. Synergistic Effect Mechanism of Different Ions on the Electrochemical Corrosion Behavior of TC4 Titanium Alloy[J]. 金属学报, 2023, 59(7): 939-946.
[5] FENG Aihan, CHEN Qiang, WANG Jian, WANG Hao, QU Shoujiang, CHEN Daolun. Thermal Stability of Microstructures in Low-Density Ti2AlNb-Based Alloy Hot Rolled Plate[J]. 金属学报, 2023, 59(6): 777-786.
[6] ZHANG Bin, TIAN Da, SONG Zhuman, ZHANG Guangping. Research Progress in Dwell Fatigue Service Reliability of Titanium Alloys for Pressure Shell of Deep-Sea Submersible[J]. 金属学报, 2023, 59(6): 713-726.
[7] LI Shujun, HOU Wentao, HAO Yulin, YANG Rui. Research Progress on the Mechanical Properties of the Biomedical Titanium Alloy Porous Structures Fabricated by 3D Printing Technique[J]. 金属学报, 2023, 59(4): 478-488.
[8] ZHANG Kaiyuan, DONG Wenchao, ZHAO Dong, LI Shijian, LU Shanping. Effect of Solid-State Phase Transformation on Stress and Distortion for Fe-Co-Ni Ultra-High Strength Steel Components During Welding and Vacuum Gas Quenching Processes[J]. 金属学报, 2023, 59(12): 1633-1643.
[9] WANG Chongyang, HAN Shiwei, XIE Feng, HU Long, DENG Dean. Influence of Solid-State Phase Transformation and Softening Effect on Welding Residual Stress of Ultra-High Strength Steel[J]. 金属学报, 2023, 59(12): 1613-1623.
[10] ZHU Zhihao, CHEN Zhipeng, LIU Tianyu, ZHANG Shuang, DONG Chuang, WANG Qing. Microstructure and Mechanical Properties of As-Cast Ti-Al-V Alloys with Different Proportion of α / β Clusters[J]. 金属学报, 2023, 59(12): 1581-1589.
[11] LOU Feng, LIU Ke, LIU Jinxue, DONG Hanwu, LI Shubo, DU Wenbo. Microstructures and Formability of the As-Rolled Mg- xZn-0.5Er Alloy Sheets at Room Temperature[J]. 金属学报, 2023, 59(11): 1439-1447.
[12] WANG Haifeng, ZHANG Zhiming, NIU Yunsong, YANG Yange, DONG Zhihong, ZHU Shenglong, YU Liangmin, WANG Fuhui. Effect of Pre-Oxidation on Microstructure and Wear Resistance of Titanium Alloy by Low Temperature Plasma Oxynitriding[J]. 金属学报, 2023, 59(10): 1355-1364.
[13] LI Xiaobing, QIAN Kun, SHU Lei, ZHANG Mengshu, ZHANG Jinhu, CHEN Bo, LIU Kui. Effect of W Content on the Phase Transformation Behavior in Ti-42Al-5Mn- xW Alloy[J]. 金属学报, 2023, 59(10): 1401-1410.
[14] LI Sai, YANG Zenan, ZHANG Chi, YANG Zhigang. Phase Field Study of the Diffusional Paths in Pearlite-Austenite Transformation[J]. 金属学报, 2023, 59(10): 1376-1388.
[15] CUI Zhenduo, ZHU Jiamin, JIANG Hui, WU Shuilin, ZHU Shengli. Research Progress of the Surface Modification of Titanium and Titanium Alloys for Biomedical Application[J]. 金属学报, 2022, 58(7): 837-856.
No Suggested Reading articles found!